

Effect of Fe(III) salts on the protection of low carbon steel in hydrochloric acid solutions by some corrosion inhibitors*

Ya.G. Avdeev,[✉] A.V. Panova and Yu.I. Kuznetsov[✉]

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, 119071 Moscow, Russian Federation

*E-mail: avdeevavdeev@mail.ru

Abstract

The effect of Fe(III) salts on the protection of 08PS low carbon steel in 2 M HCl and 2 M H₃PO₄ at 20 and 60°C by corrosion inhibitors (PKU-E, Catapin A, Catapin BPV, Soling m. Z, Soling m. L, VNPP-2, Invol-2 m. A and NORUST CM 150 C) and their mixtures with hexamethylene-tetramine (HMT) has been studied. None of the individual and two-component corrosion inhibitors studied can provide efficient protection of steel in HCl and H₃PO₄ solutions if significant amounts of Fe(III) cations are accumulated in them. In H₃PO₄ solutions containing Fe(III) phosphate, efficient protection of steel can be obtained by the formulation comprising 2 g·L⁻¹ VNPP-2 + 0.5 mM KNCS + 200 mM HMT as the corrosion inhibitor. The same formulation protects steel in 1 M HCl + 1 M H₃PO₄ (20 and 60°C) with up to 0.10 M Fe(III) cations accumulated in it. Solutions of a HCl + H₃PO₄ mixture inhibited by the formulation of VNPP-2 + KNCS + HMT can be an alternative to inhibited solutions of individual HCl in case of potential accumulation of Fe(III) chloride in them.

Received: October 23, 2024. Published: November 15, 2024 doi: [10.17675/2305-6894-2024-13-4-21](https://doi.org/10.17675/2305-6894-2024-13-4-21)

Keywords: *low carbon steel, acid corrosion, corrosion inhibitors, hydrochloric acid, phosphoric acid, iron(III) chloride, iron(III) phosphate.*

Introduction

Hydrochloric acid and its solutions are common technological fluids used at the modern enterprises [1–7]. These media are often corrosive to the metals in contact with them and cause their serious corrosion damage. Technological processes of cleaning steel products from scale, rust and other mineral deposits with HCl solutions are performed in the presence of corrosion inhibitors (CIs), thus minimizing the metal losses caused by its reaction with the acid. The existing range of CIs for steels in acid media, including HCl solutions, was reviewed in numerous publications [8–16].

*This work was funded by the Ministry of Science and Higher Education of the Russian Federation. This study was carried out as part of R&D (2022–2024): “Chemical resistance of materials, protection of metals and other materials from corrosion and oxidation” (EGISU registration number 122011300078-1, inventory number FFZS-2022-0013).

In the course of acid cleaning of the surfaces of steel products from mineral contaminants containing Fe(III) compounds, accumulation of Fe(III) salts in the etching solutions occurs. The presence of Fe(III) chloride in an HCl solution changes its properties significantly. An additional oxidizing agent appears, *i.e.*, the Fe(III) cation, which increases the environment corrosivity to the metal due to the reaction of the Fe(III) salt with iron:

Moreover, it is noted that the presence of Fe(III) salts in acid solutions often makes inhibitor protection of steels in them inefficient. This effect is primarily due to the weak inhibition by inhibitors of the cathodic reduction of Fe(III) cations on steel in solutions of acids that occur under diffusion control [17].

From the practical point of view, it is important to understand how the accumulation of Fe(III) chloride in HCl solutions during various technological operations affects the protection of steels in them by industrial CIs. If such corrosion inhibitors have low efficiency in the media in question, it is necessary to consider the possibility of searching for ways to increase their protective effect.

To improve the protective effect of CIs of steels, it is recommended to add hexamethylenetetramine (HMT) to dilute HCl solutions in case of potential accumulation of FeCl_3 in them [18]. In this regard, it is important to understand how adding HMT to a corrosive environment will affect the effectiveness of inhibitors in slowing down steel corrosion in HCl solutions.

A promising direction for increasing the efficiency of industrial CIs in HCl solutions containing Fe(III) chloride involves switching from the individual acid to its mixtures with H_3PO_4 . Moreover, for steel protection in solution than comprise acid mixtures, not individual CIs but their mixtures with HMT and KNCS have to be used. In these acid media, Fe(III) cations are bound into complex compounds with phosphate anions and HMT molecules, thus reducing their oxidizing properties and mobility [19, 20]. As a result, this effect allows some CIs to maintain efficient protection of steels even if Fe(III) salts are accumulated in the corrosive medium. For example, the corrosion rate of steel in the etching solution containing 1 M HCl + 1 M H_3PO_4 ($t \leq 80^\circ\text{C}$) with addition of 5 mM IFKhAN-92 + 0.5 mM KCNS + 200 mM HMT does not exceed $3.4 \text{ g} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$ at $C_{\text{Fe(III)}} \leq 0.1 \text{ M}$ [21]. The presence of H_3PO_4 in the etching solution should also favor the rapid removal of mineral contaminants from the metals, since the dissolution rate of Fe oxides in its presence is high [22, 23]. It should be noted [21] that the creation of inhibited etching solutions resistant to the accumulation of Fe(III) cations is possible in solutions containing H_3PO_4 alone. However, this way is unreasonable from economical point of view since HCl is less expensive than H_3PO_4 . The use of acid mixtures would make the etching solution cheaper.

It appears worthwhile to study the effect of Fe(III) salts on the protection of low carbon steel in 2 M HCl by some currently manufactured corrosion inhibitors (Soling m. Z, Soling m. L, VNPP-2, Invol-2 m. A, NORUST CM 150 C, PKU-E) and some inhibitors previously manufactured in the USSR (Catapin A and Catapin BPV). Will be studied as individual CIs

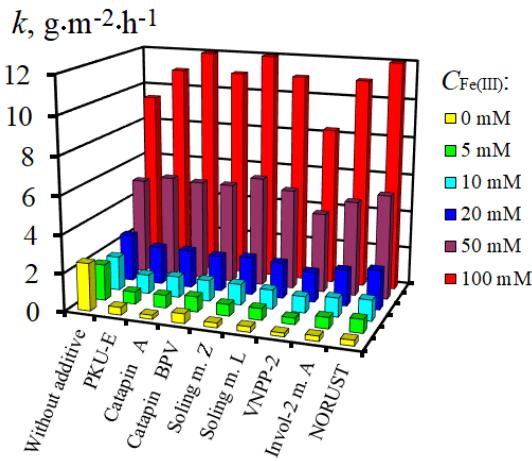
and their mixtures with HMT. If the result is unsatisfactory, the possibility of efficient application of the above CIs for steel protection in H_3PO_4 solutions containing $FePO_4$ should be studied. If the result in the H_3PO_4 solution is good, the corresponding CIs will be studied in a $HCl + H_3PO_4$ solution.

Experimental

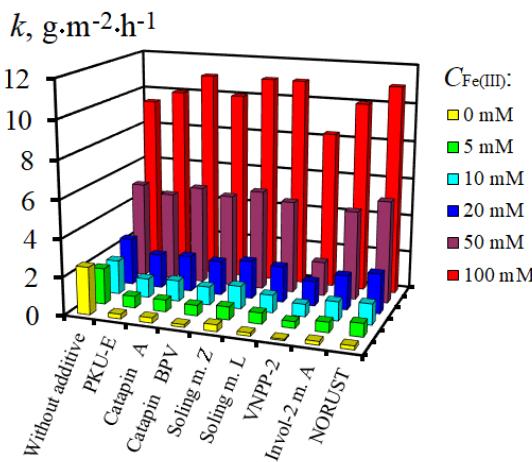
The corrosion rate of 08PS low carbon steel (composition, mass%: C – 0.08; Mn – 0.5; Si – 0.11; P – 0.035; S – 0.04; Cr – 0.1; Ni – 0.25; Cu – 0.25; As – 0.08) in 2 M HCl , 2 M H_3PO_4 , and the mixture of 1 M HCl + 1 M H_3PO_4 at $t=20$ and $60^\circ C$ was determined from the mass loss (≥ 3 samples per point) of samples sized $50 \times 20 \times 0.5$ mm using 50 mL of an acid solution per sample. The duration of the experiments was 2 h. Before the experiments, the samples were cleaned on an abrasive wheel (ISO 9001, grit 60) and degreased with acetone. All the organic CIs tested were added to the media as solutions in ethanol. The resulting concentration of ethanol was 0.24 mol/L.

The efficiency of CIs was estimated as their inhibition coefficients $\gamma=k_0/k_{in}$, where k_0 and k_{in} are the corrosion rates in the background solution and in the solution containing the corresponding additive. In the γ calculations, the acid solution containing only $Fe(III)$ cations in the corresponding concentration as the additive was taken as the background solution.

The solutions were prepared using acids (HCl and H_3PO_4) of “chemically pure” grade and distilled water. Acid solutions containing $Fe(III)$ salts were prepared by the reaction of $Fe(OH)_3$ precipitated by $NaOH$ of “chemically pure” grade from a $FeCl_3$ solution with excess of the corresponding acid. $FeCl_3 \times 6H_2O$ of “pure” grade was used to prepare the $Fe(III)$ chloride solution.


Results and Discussion

Hydrochloric acid


In background 2 M HCl ($20^\circ C$), the corrosion of 08PS steel occurs at a rate of $k_0=2.5 \text{ g} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$ (Figure 1). The presence of 0.10 M $FeCl_3$ accelerates corrosion by a factor of 3.8, thus the k_0 of steel increases to $6.9 \text{ g} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$ (Figure 1). The increase in corrosion losses due to the presence of the $Fe(III)$ salt in the total corrosion process is 73%.

In cold 2 M HCl containing no $FeCl_3$, all the CIs studied slow down corrosion of steel by a factor of 10–54. The presence of the $Fe(III)$ salt in the solution significantly decreases the protective effect of all the CIs. In the presence of 0.10 M $FeCl_3$, steel corrosion in HCl solutions containing CIs increases by 21–57 times. All inhibitors, except VNPP-2, stimulate steel corrosion. The increase in corrosion losses due to the presence of 0.10 M $FeCl_3$ in 2 M HCl is 96% in the presence of the PKU-E inhibitor, 98% with Catapin A, 95% with Catapin BPV, 98% with Soling m. Z, 97% with Soling m. L, 98% with VNPP-2, 98% with Invol-2 m. A, and 98% with NORUST CM 150 C. The most effective corrosion inhibitor VNPP-2 slows down steel corrosion by only 1.1 times. The addition of 200 mM HMT to the studied

inhibitors somewhat slows down the corrosion of steel, but this effect is insignificant (Figure 2).

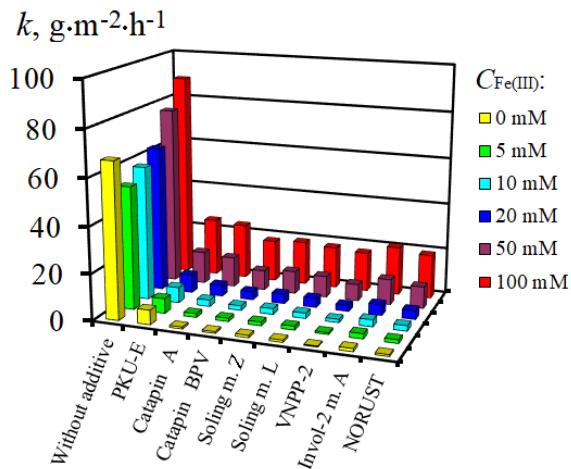

Figure 1. Corrosion rates of 08PS steel in 2 M HCl (20°C) containing FeCl_3 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ of the inhibitors.

Figure 2. Corrosion rates of 08PS steel in 2 M HCl (20°C) containing FeCl_3 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ inhibitor + 200 mM HMT.

Increasing the temperature of 2 M HCl to 60°C increases the k of steel in it to $67 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ (Figure 3). In this environment, addition of 0.10 M FeCl_3 increases the corrosion losses by $22 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, which is 25% of the total metal losses. The CIs studied inhibit the corrosion of steel in 2 M HCl (60°C) differently. With addition of PKU-E, Soling m. Z, or Invol-2 m. A, the value of k is higher than $1 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, while in the case of Catapin A, Catapin BPV, or Soling m. L, VNPP-2, or NORUST CM 150 C, steel corrosion is inhibited to a greater extent and $k < 1 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$. The presence of the FeCl_3 in the solution weakens the effect of all the CIs. The increase in corrosion losses due to the presence of 0.10 M FeCl_3 in 2 M HCl (60°C) is 75% with the PKU-E inhibitor, 97% with Catapin A, 96% with Catapin BPV, 95% with Soling m. Z, 95% with Soling m. L, 98% with VNPP-2,

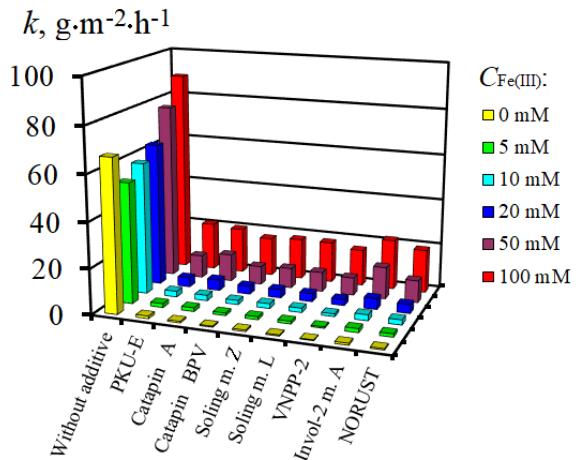

94% with Invol-2 m. A, and 96% NORUST CM 150 C. In general, the corrosion losses of steel in 2 M HCl + 0.10 M FeCl₃ in the presence of CIs are high. For the least efficient PKU-E, they amount to 25 g·m⁻²·h⁻¹. VNPP-2 inhibits corrosion most strongly, but even in its presence, $k=17$ g·m⁻²·h⁻¹.

Figure 3. Corrosion rates of 08PS steel in 2 M HCl (60°C) containing FeCl₃ in the presence of 2 g·L⁻¹ inhibitor.

As in the colder solution, the introduction of HMT additive into the inhibited solutions of 2 M HCl + 0.10 M FeCl₃ does not significantly affect the slowing down of steel corrosion (Figure 4). Only in the case of PKU-E, which is the weakest of the inhibitors studied, in the absence of FeCl₃ or at low $C_{\text{Fe(III)}} \leq 0.02$ M, the addition of HMT significantly improves the protection of steel.

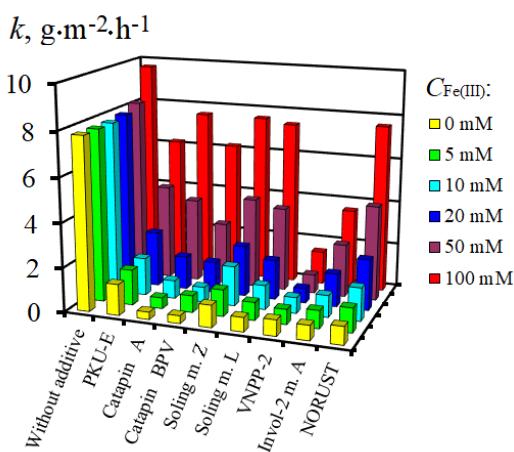
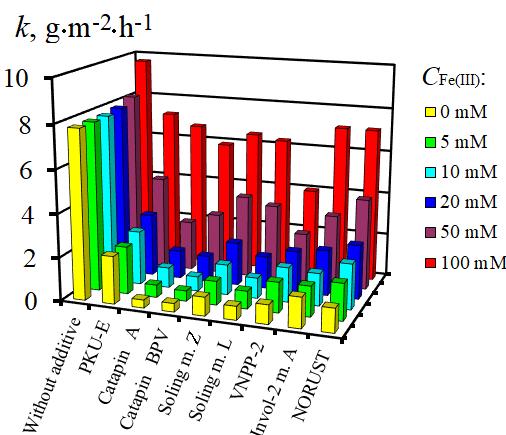
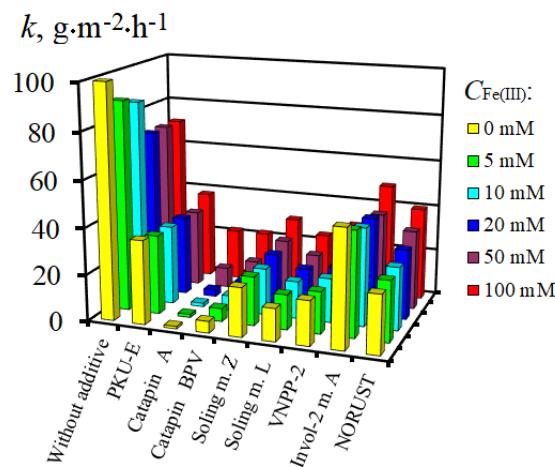

In HCl solutions containing the inhibitors in question, addition of FeCl₃ accelerates corrosion. Since the CIs studied do not provide satisfactory protection of 08PS steel in HCl solutions containing FeCl₃, the possibility of their application in H₃PO₄ solutions containing FePO₄ was investigated.

Figure 4. Corrosion rates of 08PS steel in 2 M HCl (60°C) containing FeCl₃ in the presence of 2 g·L⁻¹ inhibitor + 200 mM HMT.


Phosphoric acid

In comparison with the HCl solution, the k value of steel in 2 M H_3PO_4 (20°C) is higher, *i.e.*, $7.8 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ (Figure 5). In the presence of 0.10 M FePO_4 , $k_0=9.7 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, the increase in corrosion losses due to the presence of the Fe(III) salt being as small as 20%. In the background 2 M H_3PO_4 solution, weak protection of steel ($\gamma<10$) is provided by PKU-E, Soling m. Z, and NORUST CM 150 C. More efficient inhibitors include Catapin A, Catapin BPV, Soling m. L, VNPP-2, and Invol-2 m. A. The presence of the Fe(III) salt in the solutions reduces the protective effects of all the CIs. The increase in corrosion losses due to the presence of 0.10 M FePO_4 in 2 M H_3PO_4 is 77% in the presence of PKU-E, 96% with Catapin A, 94% with Catapin BPV, 87% with Soling m. Z, 91% with Soling m. L, 52% with VNPP-2, 81% with Invol-2 m. A, and 89% with NORUST CM 150 C.


Figure 5. Corrosion rates of 08PS steel in 2 M H_3PO_4 (20°C) containing FePO_4 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ of the inhibitors.

As in cold HCl, in a solution of H_3PO_4 (20°C) the combined use of the studied inhibitors with HMT does not allow for a significant increase in the protective effect (Figure 6).

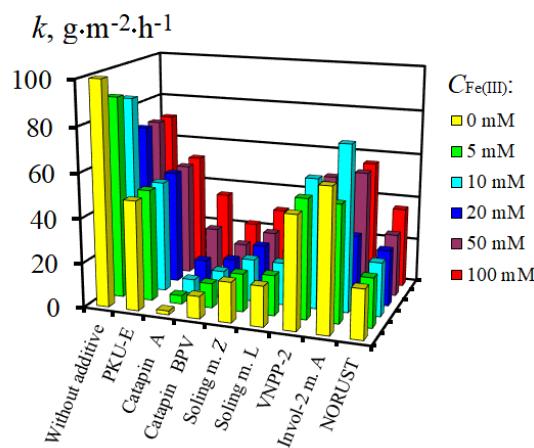


Figure 6. Corrosion rates of 08PS steel in 2 M H_3PO_4 (20°C) containing FePO_4 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ inhibitor + 200 mM HMT.

In background 2 M H_3PO_4 at 60°C, as one would expect, the k_0 of steel is higher and amounts to $105 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ (Figure 7). The presence of FePO_4 in this medium slows down the corrosion of steel. At $C_{\text{FePO}_4}=0.10 \text{ M}$, $k_0=71 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$. In background 2 M H_3PO_4 , PKU-E, Soling m. Z, Soling m. L, VNPP-2, Invol-2 m. A, and NORUST CM 150 C weakly protect steel ($\gamma<10$), whereas, in contrast, Catapin A and Catapin BPV are more efficient. The latter two CIs lose their protective effect if FePO_4 is present in the acid. The increase in corrosion losses due to the presence of 0.10 M FePO_4 in 2 M H_3PO_4 with addition of Catapin A is 95%, with Catapin BPV it is 77%. The k value of steel in the presence of Catapin A and Catapin BPV is $22 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, which is the smallest value. The additional introduction of HMT into the studied inhibited media containing Fe(III) , as a rule, worsens the protection of the metal by the inhibitor (Figure 8).

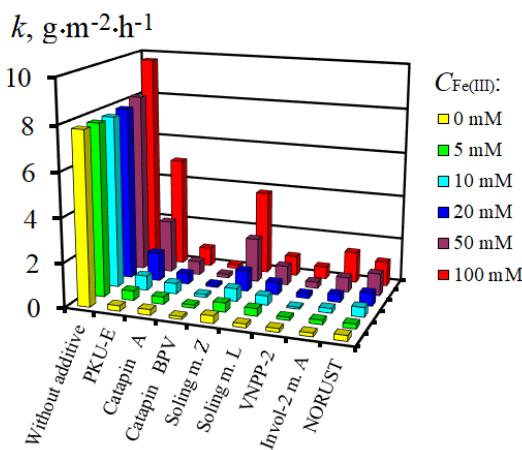
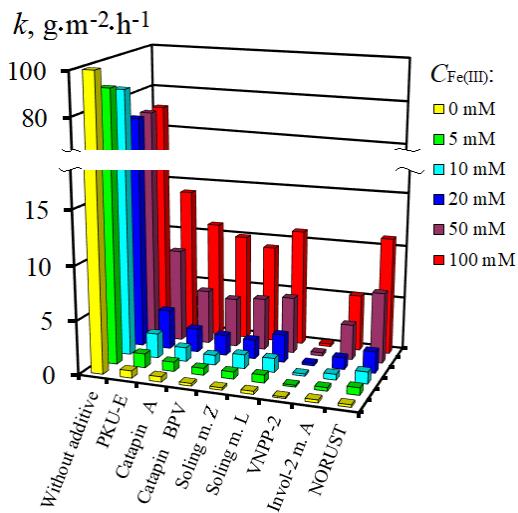

Figure 7. Corrosion rates of 08PS steel in 2 M H_3PO_4 (60°C) containing FePO_4 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ of the inhibitors.

Figure 8. Corrosion rates of 08PS steel in 2 M H_3PO_4 (60°C) containing FePO_4 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ inhibitor + 200 mM HMT.


Since individual CIs and their mixtures with HMT do not provide satisfactory protection of 08 PS steel in 2 M H_3PO_4 containing FePO_4 , we studied three-component formulations that additionally contained 0.5 mM KNCS + 200 mM HMT. As we noted above, similar mixtures based on the IFKhAN-92 inhibitor can significantly slow down the corrosion of low carbon steel in a medium containing H_3PO_4 , even in the presence of Fe(III) salts.

In cold 2 M H_3PO_4 containing no FePO_4 , all the three-component CI formulations successfully slow down the corrosion of steel, reducing it by a factor of 10–65 (Figure 9). The presence of the Fe(III) salt in the solution reduces the protective effect of all the composite CIs. With the exception of the PKU-E + KNCS + HMT and Soling m. Z + KNCS + HMT combinations, rather low k values of steel are observed in the presence of the composite CIs studied. The increase in corrosion losses due to the presence of 0.10 M FePO_4 in 2 M H_3PO_4 with addition of KNCS + HMT formulation with the PKU-E inhibitor is 95%, with Catapin A it is 71%, with Catapin BPV – 33%, with Soling m. Z – 91%, with Soling m. L – 81%, with VNPP-2 – 71%, with Invol-2 m. A – 89%, and with NORUST CM 150 C – 77%.

Figure 9. Corrosion rates of 08PS steel in 2 M H_3PO_4 (20°C) containing FePO_4 in the presence of $2 \text{ g} \cdot \text{L}^{-1}$ of the inhibitors + 0.5 mM KNCS + 200 mM HMT.

In background 2 M H_3PO_4 (60°C), all the three-component CI formulations successfully slow down steel corrosion, reducing it by a factor of 160–810 (Figure 10). The presence of the Fe(III) salt in the solution significantly reduces the protective effect of the composite CIs, except for the VNPP-2 + KNCS + HMT formulation. The increase in corrosion losses due to the presence of 0.10 M FePO_4 in 2 M H_3PO_4 with addition of the KNCS + HMT formulation with the PKU-E inhibitor is 95%, with Catapin A – 96%, with Catapin BPV – 98%, with Soling m. Z – 98%, with Soling m. L – 98%, with VNPP-2 – 48%, with Invol-2 m. A – 95%, and with NORUST CM 150 C – 98%.

Figure 10. Corrosion rates of 08PS steel in 2 M H_3PO_4 (60°C) containing FePO_4 in the presence of $2 \text{ g}\cdot\text{L}^{-1}$ of the inhibitors + 0.5 mM KNCS + 200 mM HMT.

The VNPP-2 + KNCS + HMT formulation for which $k \leq 0.25 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, which is a promising result for further studies, was selected from the CI mixtures studied. Along with it, we studied the formulation comprising Invol-2 m. A + KNCS + HMT, for which we tried to obtain a satisfactory effect by increasing the content of the components.

Mixture of hydrochloric and phosphoric acids

In the 1 M HCl + 1 M H_3PO_4 background solution, the k values of steel are 4.0 and $54 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ at 20 and 60°C, respectively (Table 1). Addition of Fe(III) salts to this medium accelerates corrosion of steel. At 20°C in the presence of 0.10 M Fe(III) , the increase in corrosion losses is $4.2 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, or 51% of the total corrosion rate. At 60°C in the presence of 0.10 M Fe(III) , the increase in corrosion losses is $29 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, or 35% of the total corrosion rate. Inhibition of this medium with the VNPP-2 + KNCS + HMT formulation slows down the corrosion of steel to $0.13\text{--}0.35 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ at 20°C and to $0.10\text{--}1.5 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ at 60°C. At 20°C, the increase in corrosion losses due to the presence of 0.10 M Fe(III) is $0.22 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ or 63%, while at 60°C it is $1.4 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, or 93%. In contrast, under the same conditions, the Invol-2 m. A + KNCS + HMT formulations are inferior in protective effect to the VNPP-2 + KNCS + HMT formulation.

Table 1. Corrosion rates of 08PS steel (k , $\text{g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$) in 1 M HCl + 1 M H_3PO_4 containing Fe(III) salts.

Temperature	$C_{\text{Fe(III)}}, \text{mM}$					
	0	5	10	20	50	100
Without additive						
20°C	4.0	3.6	3.1	3.9	5.1	8.2
60°C	54	50	48	52	70	83
2 g/L Invol-2 m. A + 200 mM HMT + 0.5 mM KNCS						
20°C	0.20	0.35	0.49	0.55	1.6	4.4
60°C	0.64	1.0	1.2	2.2	4.2	6.0
4 g/L Invol-2 m. A + 200 mM HMT + 1.0 mM KNCS						
60°C	0.53	1.1	1.3	2.2	3.4	6.6
2 g/L VNPP-2 + 200 mM HMT + 0.5 mM KNCS						
20°C	0.13	0.15	0.15	0.21	0.30	0.35
60°C	0.10	0.05	0.08	0.15	0.75	1.5

The efficiency of the CIs studied in the inhibition of low carbon steel corrosion in cold HCl solution differs. On transition to hot HCl, the PKU-E agent poorly inhibit corrosion. In H_3PO_4 solution at 20°C, PKU-E, Soling m. Z, NORUST CM 150 C poorly inhibit corrosion, while at 60°C, Soling m. L, VNPP-2, and Invol-2 m. A also join this list. For all the CIs that demonstrate high protective effects in acids that do not contain Fe(III) salts, the presence of such salts deteriorates the protective effect significantly. At a high content of Fe(III) salts in the acids, protection is almost lost and the corrosion rate of the metal becomes high.

The absence of a positive effect of HMT on slowing down the corrosion of steel by the studied inhibitors was unexpected, since this is the only additive described in the literature [18] that allowed nitrogen-containing inhibitors to maintain their protective effect on steels when FeCl_3 salt accumulated in the HCl solution. This difference is due to the fact that the authors [18] studied dilute acid solutions, while we studied more concentrated environments.

The formulation of VNPP-2 + KNCS + HMT provides good protection of steel in H_3PO_4 even if up to 0.1 M FePO_4 is accumulated in it. This effect is important because it persists when a substantial fraction of H_3PO_4 is replaced by HCl in the system. At $t \leq 60^\circ\text{C}$ in 1 M HCl + 1 M H_3PO_4 containing $2 \text{ g}\cdot\text{L}^{-1}$ VNPP-2 + 0.5 mM KNCS + 200 mM HMT, the corrosion rate of 08 PS steel does not exceed $1.5 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, which is an outstanding result.

A new inhibited acid formulation based on HCl and H_3PO_4 with low corrosivity against low carbon steels, which is resistant to the accumulation of Fe(III) salts, has been developed.

Efficient inhibition of steel corrosion in this environment is achieved by the complex action of the components it comprises. Phosphoric acid binds Fe(III) cations into complex compounds, reducing their oxidizing ability and mobility in the corrosive environment [19]. Moreover, the addition of HMT further binds Fe(III) cations into more complex compounds, thus enhancing the effect of H_3PO_4 [20]. By analogy with the IFKhAN-92 inhibitor [21], it can be assumed that the formulation of VNPP-2 + KNCS + HMT should form a protective film on steel, which can efficiently slow down the reduction of Fe(III) cations, thus preventing corrosion.

Conclusions

1. None of the eight CIs studied can provide efficient protection of low carbon steel in HCl solutions (20 and 60°C) if significant amounts of Fe(III) salts are accumulated in the medium.
2. In H_3PO_4 solutions (20 and 60°C) containing $FePO_4$, efficient steel protection can be obtained by the formulation comprising VNPP-2 + KNCS + HMT as the CI.
3. The formulation comprising $2\text{ g}\cdot\text{L}^{-1}$ VNPP-2 + 0.5 mM KNCS + 200 mM HMT allows steel to be protected in the mixture of HCl + H_3PO_4 (20 and 60°C) containing Fe(III) salts. This solution can be an alternative to inhibited solutions of individual HCl in case of potential accumulation of Fe(III) chloride.

References

1. Ya.G. Avdeev and Yu.I. Kuznetsov, Organic Inhibitors of Metal Corrosion in Acid Solutions. I. Mechanism of Protective Action, *Russ. J. Phys. Chem. A*, 2023, **97**, 413–427. doi: [10.1134/S0036024423030056](https://doi.org/10.1134/S0036024423030056)
2. J.A. Richardson and M.S.H. Bhuiyan, Corrosion in Hydrogen Halides and Hydrohalic Acids, *Reference Module in Materials Science and Materials Engineering*, 2017, **2017**, 1–21 doi: [10.1016/B978-0-12-803581-8.10372-8](https://doi.org/10.1016/B978-0-12-803581-8.10372-8)
3. J.A. Richardson, 2.22 - Corrosion in Hydrogen Halides and Hydrohalic Acids, *Shreir's Corrosion*, 2010, **2**, 1207–1225. doi: [10.1016/B978-044452787-5.00197-9](https://doi.org/10.1016/B978-044452787-5.00197-9)
4. R. Fan, W. Zhang, Y. Wang, D. Chen and Y. Zhang, Metal Material Resistant to Hydrochloric Acid Corrosion, *J. Phys.: Conf. Ser.*, 2021. **1732**, 012134. doi: [10.1088/1742-6596/1732/1/012134](https://doi.org/10.1088/1742-6596/1732/1/012134)
5. B. Guo, X. Liu and X. Tan, *Chapter 13 – Acidizing*, Petroleum Production Engineering 2nd Edition, Houston, Gulf Professional Publishing, 2017, pp. 367–387. doi: [10.1016/B978-0-12-809374-0.00013-1](https://doi.org/10.1016/B978-0-12-809374-0.00013-1)
6. L.V. Hong and H.B. Mahmud, A Comparative Study of Different Acids used for Sandstone Acid Stimulation: A Literature Review, *IOP Conf. Ser.: Mater. Sci. Eng.*, 2017, **217**, 012018. doi: [10.1088/1757-899X/217/1/012018](https://doi.org/10.1088/1757-899X/217/1/012018)
7. C. Verma, M.A. Quraishi and E.E. Ebenso, Corrosive electrolytes, *Int. J. Corros. Scale Inhib.*, 2020, **9**, no. 4, 1261–1276. doi: [10.17675/2305-6894-2020-9-4-5](https://doi.org/10.17675/2305-6894-2020-9-4-5)

8. A.I. Altsibeeva and S.Z. Levin, *Metal Corrosion Inhibitors. Handbook*, Leningrad, Chemistry, 1968, 264 pp. (in Russian).
9. L.I. Antropov, E.M. Makushin and V.F. Panasenko, *Metal corrosion inhibitors*, Kiev, Technic, 1981, pp. 57–81 (in Russian).
10. G. Schmitt, Application of Inhibitors for Acid Media, *Br. Corros. J.*, 1984, **19**, no. 4, 165–176. doi: [10.1179/000705984798273100](https://doi.org/10.1179/000705984798273100)
11. S.M. Reshetnikov, *Metal Corrosion Inhibitors in Acids*, Leningrad, Chemistry, 1986, 144 pp. (in Russian).
12. E.S. Ivanov, *Metal Corrosion Inhibitors in Acidic media*, Moscow, Metallurgy, 1986, 175 pp. (in Russian).
13. M. Finšgar and J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review, *Corros. Sci.*, 2014, **86**, 17–41. doi: [10.1016/j.corsci.2014.04.044](https://doi.org/10.1016/j.corsci.2014.04.044)
14. K.R. Ansari, D.S. Chauhan, A. Singh, V.S. Saji and M.A. Quraishi, *Corrosion Inhibitors for Acidizing Process in Oil and Gas Sectors, Corrosion Inhibitors in the Oil and Gas Industry*, Eds.: V.S. Saji and S.A. Umoren, Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2020, pp. 153–176. doi: [10.1002/9783527822140.ch6](https://doi.org/10.1002/9783527822140.ch6)
15. M. Goyal, S. Kumar, I. Bahadur, C. Verma and E.E. Ebenso, Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review, *J. Mol. Liq.*, 2018, **256**, 565–573. doi: [10.1016/j.molliq.2018.02.045](https://doi.org/10.1016/j.molliq.2018.02.045)
16. Ya.G. Avdeev and Yu.I. Kuznetsov, Acid corrosion of metals and its inhibition. A critical review of the current problem state, *Int. J. Corros. Scale Inhib.*, 2022, **11**, no. 1, 111–141. doi: [10.17675/2305-6894-2022-11-1-6](https://doi.org/10.17675/2305-6894-2022-11-1-6)
17. Ya.G. Avdeev and T.E. Andreeva, Mechanism of Steel Corrosion in Inhibited Acid Solutions Containing Iron(III) Salts, *Russ. J. Phys. Chem. A*, 2023, **96**, 425–436. doi: [10.1134/S0036024422020030](https://doi.org/10.1134/S0036024422020030)
18. F.B. Glilina, E.S. Bulavina and N.I. Podobaev, Corrosion protection of St. 1 and EI 531 grade steels in dilute solutions of hydrochloric acid in the presence of ferric chloride, *Metal Corrosion Inhibitors*, Eds.: S.A. Balezin, F.B. Glilina, N.I. Podobaev, N.G. Klyuchnikov and E.G. Zak, Moscow, MGPI named after V.I. Lenin, 1969, pp. 190–195 (in Russian).
19. Ya.G. Avdeev, T.E. Andreeva, A.V. Panova and Yu.I. Kuznetsov, Cyclic voltammetric study of the HCl–H₃PO₄–H₂O–Fe(III) system, *Int. J. Corros. Scale Inhib.*, 2020, **9**, no. 2, 538–549. doi: [10.17675/2305-6894-2020-9-2-9](https://doi.org/10.17675/2305-6894-2020-9-2-9)
20. Ya.G. Avdeev, T.E. Andreeva and A.V. Panova, Effect of urotropine on the potential of the Fe(III)/Fe(II) redox couple in mineral acid solutions, *Int. J. Corros. Scale Inh.*, 2020, **9**, no. 2, 571–583. doi: [10.17675/2305-6894-2020-9-2-12](https://doi.org/10.17675/2305-6894-2020-9-2-12)
21. Ya.G. Avdeev, O.A. Kireeva, D.S. Kuznetsov and Yu.I. Kuznetsov, Improvement of corrosion inhibition of steel 08PS by composition of IFKhAN-92 with KNCS in mixtures of HCl and H₃PO₄ containing Fe(III), using urotropine, *Korroziya: Zashchita Materialov*

i Metody Issledovanii (Corrosion: Material Protection and Research Methods), 2018, **7**, 22–28 (in Russian). doi: [10.31044/1813-7016-2018-0-7-22-28](https://doi.org/10.31044/1813-7016-2018-0-7-22-28)

22. A.V. Kuzin, I.G. Gorichev and Y.A. Lainer, Stimulating effect of phosphate ions on the dissolution kinetics of iron oxides in an acidic medium, *Russ. Metall.*, 2013, **2013**, 652–657. doi: [10.1134/S0036029513090073](https://doi.org/10.1134/S0036029513090073)

23. A.V. Kuzin, A.V. Lobanov, V.A. Shelonzev, E.A. Eliseeva and A.S. Samadov, Process of Magnetite Dissolution in Orthophosphoric and Sulfuric Acid Solutions According to Kinetic and Electrochemical Methods, *Russ. J. Phys. Chem. B*, 2024, **18**, 669–674. doi: [10.1134/S1990793124700106](https://doi.org/10.1134/S1990793124700106)

