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Abstract

A novel synthetic chemical, namely (Z)-7-methyl-4-(2-oxopropylidene)-[1,5]-benzodiazepin-2-
one (BZ-Me), was characterized using *H NMR and *C NMR techniques. Its ability to
minimize the corrosion of E24 steel in a 1 M hydrochloric acid solution was experimentally
evaluated using various techniques, including stationary electrochemical techniques (PDP),
electrochemical impedance spectroscopy (EIS), density functional theory (DFT) methods, and
Monte Carlo (MC) simulations. Combining EDX assessment with scanning electron
microscopy (SEM) allowed for an investigation of the surface morphology of E24 steel both
alone and in the presence of the inhibitor. Both approaches are in excellent agreement, indicating
that the BZ-Me compound functions as a mixed inhibitor with a maximum effectiveness of 90%
(according to the polarization curve) and 88% (according to the EIS methodology) for a
concentration of 1 mM. In addition, the charge transfer resistance rises as inhibitor
concentrations and immersion durations increase, as seen in the electrochemical impedance
spectrum. Conversely, the interfacial capacitance decreases with higher inhibitor concentrations
and longer immersion durations. Based on Langmuir’s isotherm, the tests have demonstrated
that BZ-Me attaches to the E24 steel surface with a standard free energy | AG?, | of 36.17 kJ-mol2.
This indicates that BZ-Me uses both physical and chemical adsorption to prevent the corrosion
process. The surface morphological observation revealed that BZ-Me forms a barrier of
protection that inhibits the transfer of active corrosive species to E24 steel surfaces, compared
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to the blank test. Furthermore, the offered theoretical results confirmed the experimental results
obtained.
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1. Introduction

Sustainable materials have been extensively utilized in various applications that reduce the
pollution caused by chemicals and their use [1]. Several industrial facilities frequently use
iron and iron-based alloys of various grades as construction materials, which include acids,
alkalis, and salt solutions, due to their inexpensive price and exceptional strength [2]. Most
research activities in recent years have concentrated on producing environmentally friendly
and cost-effective inhibitors. As a general rule, organic inhibitors work to minimize metal
corrosion by forming a barrier of protection on the metal surface through either
chemisorption or physisorption. To mitigate the undesirable rate of metal dissolution, a
common and effective method involves adding small quantities of both organic and
inorganic chemicals to the corrosive environment [3, 4]. In particular, compounds with
heteroatoms or multiple bonds serve as effective corrosion inhibitors and adsorption centers
because they contain lone pairs. Nanomaterials are more useful because of interactions
between functional groups and the metal surface. These interactions include loading, surface
activity, and polymerization [5]. The group of chemical compounds known as
benzodiazepines is crucial to both pharmacological and biological research. Owing to their
wide variety of applications, their derivatives have attracted significant interest in the
domains of medicinal chemistry [6—8]. Most people use them as medications to treat anxiety,
panic attacks, agitation, sleeplessness, and amnesia. They do not appear to be especially
dangerous to the environment. Furthermore, they are economical and easy to prepare [9—
11]. Typically, the synthesis of 1,5-benzodiazepines involves the combination of o-
phenylenediamine with a,p-unsaturated carbonyl compounds, pB-haloketones, or ketones in
acidic environments. These acidic conditions play a crucial role in enhancing the
condensation process [12]. In the limited research on their use as corrosion inhibitors,
according to El Ibrahimi [13], three derivatives of 1,5-benzodiazepin-2-one (DMBD: 4,7-
dimethyl-1,5-benzodiazepin-2-one, PBD: 3-phenyl-1,5-benzodiazepin-2-one, and MPBD:
4-methyl-7-phenyl-1,5-benzodiazepin-2-one) prevented iron from dissolving in an acidic
environment. In another study, Sebhaoui etal. [14] stated 4-(2-oxopropylidene)-1-
propargyl-1,2,4,5-tetrahydro-3H-1,5-benzodiazepin-2-one  (PTB) and 1-decyl-4-(2-
oxopropylidene)-1,2,4,5-tetrahydro-3H-1,5-benzodiazepine-2-one (DTB) as two efficient
substances that prevent carbon steel from corroding in a solution of 1 M HCI. Moreover,
Laabaissi et al. [15] discovered that mild steel may effectively be protected against corrosion
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in an acidic environment by the benzodiazepine derivative. To our knowledge, only a limited
number of studies have explored the use of benzodiazepines as corrosion inhibitors. Inspired
by these findings, the investigation was continued by our team, leading to the development
of new compounds and the exploration of their inhibitory potential. In this context, the
present study was conducted to establish a correlation between previously reported inhibition
efficiencies and the specific structural characteristics of a new benzodiazepine compound,
namely (2)-7-methyl-4-(2-oxopropylidene)-[1,5]-benzodiazepin-2-one (BZ-Me). The
inhibition mechanism for corrosion on E24 steel in a 1 M HCI solution was thoroughly
investigated using traditional methods, including potentiodynamic polarization (PDP) and
electrochemical impedance spectroscopy (EIS) tests. Additionally, the adsorption isotherm
of the inhibitor on the E24 steel surface was determined, along with the standard free energy
of adsorption (AG,,.). The influence of immersion time in the corrosive solution was also
examined, and the surface morphology was analyzed. To further understand the corrosion
inhibition process, the tested inhibitor was subjected to molecular-level analysis through
computational methods and molecular simulation.

2. Materials and Methods

2.1. Synthesis of inhibitor

Figure 1 presents the synthesis procedure of (Z)-7-methyl-4-(2-oxopropylidene)-4,5-
dihydro-1H-[1,5]-benzodiazepin-2(3H)-one (BZ-Me). The derivative was prepared by the
reaction of a solution of dehydroacetic acid 2 (3.36 g, 0.02 mol) and 4-methyl-o-
phenylenediamine 1 (4.32 g, 0.04 mol) in xylene (80 mL) and refluxed for 4 h. Next, the
precipitated product was filtered under reduced pressure and then recrystallized with ethanol.
The resulting product underwent characterization via *H NMR, 3C NMR, and Heteronuclear
2D (Figures 2, 3, and 4).
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Figure 1. Procedure for the synthesis of (Z)-7-methyl-4-(2-oxopropylidene)-4,5-dihydro-1H-
[1,5]-benzodiazepin-2(3H)-one (BZ-Me).

(2)-7-Methyl-4-(2-oxopropylidene)-4,5-dihydro-1H-[1,5]-benzodiazepin-2(3H)-one
(referred to as compound BZ-Me) was obtained as a yellow solid with a melting point of
242—-244°C (in ethanol). Its thin-layer chromatography (TLC) profile, using a mixture of
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cyclohexane and ethyl acetate (8/2, v/v), displayed a Rf value of 0.15. The compound’s
proton nuclear magnetic resonance (*H NMR) spectrum, recorded at 300 MHz in DMSO-ds,
revealed the following chemical shifts (6 in ppm): 2.04—2.27 (two singlets, 2CHjs); 3.10
(singlet, 2H, CHy); 5.31 (singlet, 1H, CHyinyie); 6.92—-7.13 (multiplet, 3H, CHy); 10.29
(singlet, 1H, NH); 12.32 (singlet, 1H, NH). The compound’s carbon-13 nuclear magnetic
resonance (3C NMR) spectrum, recorded at 75 MHz in DMSO-ds, displayed the following
chemical shifts (6 in ppm): 20.80 (CHs); 29.49 (CHs); 41.63 (CHy); 95.88 (CHyinyi); 123.02—
126.24 (CHy); 128.51-168.14 (Cy).
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Figure 2. *H NMR spectrum of (BZ-Me).
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Figure 3. *C NMR spectrum of (BZ-Me).
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Figure 4. Heteronuclear 2D spectrum of (BZ-Me).

2.2. Electrodes, test solution

The electrochemical measurements were conducted using rectangular samples of carbon
steel (E24) with an area of 0.785 cm?. The remaining portion of the mild steel electrode was
coated with epoxy resin for insulation, and the specified chemical composition was:
Mn=0.52%, Si=0.24%, C=0.11%, Cr=0.12%, Ni=0.10%, Cu=0.14% and the remainder
Fe. Before conducting any studies, all specimens were sequentially polished using emery
paper of grades 400, 600, 1000, 1500, and 2000. After that, they were cleaned with distilled
water, treated with acetone to remove oil, let air dry, and allowed to dry at room temperature.
As for the aggressive medium of 1 M HCl involved in all the tests, was prepared via diluting
of analytical reagent-grade 37% HCI with distilled water.

2.3. Electrochemical measurements

The electrochemical examinations were conducted methodically employing a VoltalLab-
PGZ-100, which is managed by the control of the Volta Master 4 analyzing software. A
common three-electrode cell system is fitted with a working electrode (E24 steel), a
reference electrode (Ag/AgCI/KCI), and an auxiliary electrode (platinum rod). The saturated
calomel electrode (vs. SCE) served as the standard for all potentials. Before assessing the
electrochemical performance of the E24 steel in corrosive solution, the working electrode
was left in the test solution for over 60 minutes at a temperature of 298 K to maintain the
open circuit potential (OCP) voltage. The polarization readings were outlined over a scale
of —800 to —100 mV/ECS, with an automatic scan rate of 1 mV/s. Meanwhile, alternating
current (AC) signals with a peak-to-peak amplitude of 10 mV were used for electrochemical
impedance spectroscopy (EIS) investigations. The measurements were performed through
the frequency range of 100 kHz to 10 mHz under varied situations. The data acquired from
both the PDP and EIS approaches were assessed and manipulated utilizing graphing and
impedance analysis programs, namely EC-Lab.
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2.4. Surface morphology

The morphological and elemental composition of the E24 steel, both without or with 1 mM
of BZ-Me in 1 M HCI solution, were analyzed through a thermo-scientific Quattro S
scanning electron microscope (SEM) incorporating energy-dispersive X-ray spectroscopy
(EDX). The surface morphological structure, average roughness, and hydrophobicity of E24
surfaces were assessed after immersing them for 24 hours. We conducted the research at the
Laboratory SEM/EDX, one of the Technical Support Units for Scientific Research affiliated
with the National Center for Scientific and Technical Research.

2.5. Computational details

2.5.1. Ab initio DFT modeling

The Initio Density Functional Theory (DFT) method [16, 17] was used in this work to predict
the structural and global reactivity of the neutral form of BZ-Me. Optimizing the geometrical
structure of the title molecule was done by PBEPBE level at 6-31+G(d,p) basis set [18, 19].
All Ab-initio DFT calculations were performed using the Gaussian 09 program package. The
DFT study has been used for analyses of Frontier Molecular Orbitals (FMOs), molecular
electrostatic potentials (MEP), contour representation of ESP distributions, Mulliken charge
distribution [20], and electronic descriptors including the energies of highest occupied,
lowest unoccupied molecular orbital (Eqomo and Eiumo), the frontier orbital energy gap
(AEgap), the electron affinity (EA), the ionization potential (IP), the electronegativity (y), the
chemical hardness (1), the softness (S), electron-accepting power (o*), electron-donating
power (o~), back-donation (Apack-donation), the fraction of electrons transferred (AN), and
metal/inhibitor interaction energy (Ay) were calculated according to Equations (1-11) as
reported in the literature [21]:

|P=—EHOMO (1)
EAZ—ELUMO (2)
AEgap=ELumo—EHomo (3)
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where nre represents the absolute hardness of iron, with a value of 0 eV-mol™ and y. is the
work function (4.81 eV-mol~1) of the Fe surface (Fe (110)).To further study the local
reactivity of BZ-Me, we performed a detailed analysis using DFT, focusing on molecular
electrostatic potentials (MEP), Mulliken charges, and electrostatic potential (ESP)
distributions. This approach allowed us to gain deeper insights into the molecular
interactions and potential reaction sites of BZ-Me.

2.5.2. Simulation details

To study the nature of the interaction between the BZ-Me onto Fe-substrate, we used the
molecular dynamics (MD) simulations [22, 23] implemented using the Material Studio 8.0
software from the BIOVIA company. According to earlier reports for the representation of
carbon steel, Fe (110) surface was adopted [24, 25]. The interactions BZ-Me—iron (Fe)
substrate in the simulated corrosion media performed via the Fe (110) supercell of size
(12x12) and a vacuum slab with (50 A) thickness in a simulation box (32 Ax32 Ax6 A)
[26]. The potential energy values required for molecular interactions were derived from the
COMPASSII force field during MD simulations [27] This force field, which successfully
predicts various gas-condensed-phase properties of a variety of compounds, has previously
been used in investigations of inorganic and organic systems [28—30]. Furthermore, MD was
achieved using an NVT canonical ensemble at 293 K, 1 fs time step, and 400 picoseconds
simulation period.

3. Results and Discussion

3.1. Open circuit potential

The open circuit potential refers to the electrical potential difference between the reference
electrode and the working electrode when no current is flowing through the circuit. It was
used to record the polarization and impedance of inhibitors in a corrosive environment to
reach a quasi-stationary state [31]. Additionally, studying the OCP shifts over time of the
working electrode is crucial for identifying corrosion zones, complete and partial inhibition,
and inhibitor-threshold concentrations [32]. Figure 5 presents the plot of OCP time plots for
E24 steel in the uninhibited and inhibited BZ-Me solutions in 1 M HCI at 293 K. In an
uninhibited test, (Ecor at t=3600 s) values in the steady state are consistently higher than the
immersion potential (Eocp at t=0). After a few minutes, the metal reached a stable condition,
which is consistent with free corrosion [33]. In contrast, adding BZ-Me to the corrosive
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solution shifts the potential value into the positive region at all studied concentrations.
Furthermore, the potential progressively becomes stable after a certain period, both with and
without the presence of BZ-Me, as has been observed in several experiments [34—36].

3.2. Potentiodynamic polarization (PDP)

Potentiodynamic anodic and cathodic polarization graphs for E24 steel in an acidic medium
with and without diverse amounts of BZ-Me at 293 K are displayed in Figure 6. The
electrochemical parameters, comprising corrosion current density (icorr), COrrosion potential
(Ecorr), cathodic and anodic Tafel slopes (b and b,), and inhibition efficiency (IE%) are
determined and listed in Table 1. The inhibition efficiency of polarization curves was
determined with the following Equation (12) [37]:

T
I (12)

corr

where i’ and i are the corrosion current density values in the absence and presence of

corr corr

BZ-Me, respectively, ascertained by extrapolation of the Tafel lines to the corrosion
potential.
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Figure 5. Open circuit potential vs. time for E24 steel alone and with BZ-Me at different
amounts in 1 M HCI solution at 293 K.
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Figure 6. PDP plots for E24 steel alone and with BZ-Me at different amounts in 1 M HCI
solution at 293 K.

Based on the preliminary study of this diagram (Figure 6), the introduction of BZ-Me to
the corrosive solution lowers the cathodic and anodic curve slopes, which results in a
significant reduction in the rate of oxidation of the metal at the anode and the reduction of H*
ions at the cathode at all measured concentrations [38]. While there is a shift in Eor values
towards positive values for BZ-Me compared to the blank test, which aligns with what is
reported in the literature [39-41], if the absolute difference in corrosion potential (Ecorr)
between the inhibitory and uninhibited solutions is under 85 mV, then the inhibitors may be
categorized as mixed types. Since the observed change equals 49 mV vs. SCE, it suggests that
BZ-Me may be categorized as a mixed type with a major anodic effectiveness [42]. However,
the data presented in Table 1 reveal a little shift in the values of b, and b. after adding BZ-Me,
this variation suggests that the inhibitor molecules do not significantly affect the mechanism
of E24 dissolution and hydrogen formation processes [43]. Instead, it reduces the occurrence
of both reactions and adsorbed onto the metal surface by inhibiting the active sites on the
metal/solution interface, hence reducing the corrosion reaction. In addition, the level of
inhibitory effectiveness rises as the concentrations of BZ-Me increase, ultimately reaching a
peak value of 90.78% at a concentration of 1 mM, which demonstrates that BZ-Me behaves
like an extremely efficient inhibitor for preventing the corrosion of E24 steel in HCI
environment. Additionally, the presence of nitrogen and oxygen atoms in the BZ-Me plays a
significant function as adsorption sites and contributes to molecular interactions with E24
steel. This is likely responsible for the compound’s inhibitory activity [44].
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Table 1. The values of the descriptor potentiodynamic parameters for E24 steel alone and with BZ-Me at
different amounts in 1 M HCI solution at 293 K.

[BZ-I\/IethyI] (mM) Ecorr (mV/Ag—AgCI) Icorr (uA/cmz) ba (mV/dec) bc (mV/dec) IE%

0 —483 340.6 -94.2 91.3
0.05 —455 101.3 -89.7 58.9 70.27
0.1 —452 77.1 -91.3 62.1 77.36
0.5 -441 53.3 -120.1 54.6 84.35
1 —434 314 -115.6 60.6 90.78

3.3. Electrochemical impedance spectroscopy (EIS)

3.3.1. Concentration effect

In corrosion research, electrochemical impedance spectroscopy (EIS) is recognized and
powerful. It provides information on surface qualities, electrode kinetics, and mechanisms
[45, 46]. Figures 7 and 8 depict the Nyquist, Bode, and Phase plots to evaluate the corrosion
resistance of E24 steel in an acidic environment alone and with different concentrations of
BZ-Me at 293 K. The Nyquist plot (Figure 7) exhibits a large single capacitive loop, which
is clearly defined as a time constant in the Bode plot (Figure 8). According to this discovery,
charge transfer activities dominated the corrosion process [47], and the inhibitor forms a
highly effective interface barrier that inhibits the E24 steel surface [48]. The overall
assessment results show that it expands as the concentration of BZ-Me rises. It implies that
the inhibition efficiency is related to the concentration of the inhibitor tested. Significantly,
the rough and heterogeneous surface of the electrode contributes to the frequency dispersion,
as seen by the imperfect semicircles illustrated in Figure 7 [49-52]. Besides, the data suggest
that the inhibitor raises the value of Ry, and the following Equation (13) measures the
inhibition efficiency [53]:
i 0
IE% ="a—Ra 10004 (13)
Furthermore, a higher concentration of BZ-Me causes the samples to exhibit increased
impedance at low frequencies, according to the Bode (module/phase) plots indicated in
Figure 8. It is worth noting that the BZ-Me molecules stick at the surface of the sample,
forming a protective layer that inhibits metal corrosion. Furthermore, the phase angle of the
sample impedances is approximately 65° at high frequencies, indicating that the impedance
represents an impure capacitance [25].
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Figure 7. Nyquist curve of E24 steel alone and with BZ-Me at different amounts in 1 M HCI
solution at 293 K.

To get a more profound comprehension of the characteristics of the interface between
the electrode and the solution, an electrical equivalent circuit was proposed (Figure 9), this
circuit closely matches the impedance data presented in Figure 7 and is detailed in Table 2.
The system is composed of three components: R (the solution resistance), R (the charge
transfer resistance), and CPEy, (the interfacial capacitance instead of a pure capacitor).
Although the Nyquist plots reveal a depressed capacitive loop, the relationship between the
double-layer capacitance (Cq4) and the constant phase element (CPEy) is expressed by the
given Equation (14) [54]:

C,y =Y, 0" =Y,(2nf )" (14)

where Y, is the admittance, n represents the exponent of the CPE (—1<n<1), w is the angular
frequency, and the fitted variables are provided in detail in Table 3.
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Figure 8. Bode modulus and Phase Angle curves of E24 steel alone and with BZ-Me at
different amounts in 1 M HCI solution at 293 K.
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Table 2. The values of the descriptor electrochemical impedance parameters for E24 steel alone and with
BZ-Me at different amounts in 1 M HCI solution at 293 K.

[BZ-Me] (MM)  Rs (22-cm?) Rct (Q2-cm?) CPEa (uF-cm~2) n IE (%0) 0
0 1.76 42.63 589.9 0.84 — —

0.05 1.73 139.7 113.9 0.82 69.49 0.6949

0.1 1.47 170.1 93.6 0.81 74.94 0.7494

05 1.42 241.7 65.9 0.75 82.36 0.8236

1 1.28 372.3 42.8 0.76 88.55 0.8855

According to Table 2, a lower n value about increased quantities confirms the increase
in the heterogeneous surface. Additionally, the selection values of inhibitor concentration
raise the R¢; progressively and reduce the CPEy bit by bit. This indicates that the protective
layer becomes thicker, which works as a barrier against E24 substrate corrosion. The highest
level of inhibition efficiency was achieved at 88.85% at 1 mM of BZ-Me, which is
compatible with the data obtained from the Tafel experiment. Furthermore, the efficiency
can be evaluated using:

0 i
CPELC;PE(“ .100% (15)
E

dl

IE% =

The obtained values are slightly higher than those obtained by transfer resistance and
close to the polarization data. These findings agree the explanation introduced by Cao, 1996,
that when the E.or is not affected by the presence of the inhibitor as well as Tafel slopes, the
inhibitor acted via a geometric blockage at the metal surface could be clarified for better
readability and accuracy [55, 56].
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3.3.2. Immersion effect

To better understand the consequences of immersion time on the corrosion properties and
the adsorption phenomenon of E24 steel in 1 M HCI medium, an electrochemical impedance
spectroscopy test was conducted. Figures 10 and 11 illustrate the Nyquist, Bode, and Phase
illustrations at the corrosion potential for a 1 mM concentration of BZ-Me. These graphs
depict a distinct semicircle over time [57-59]. Table 3 compiles the electrochemical
variables extracted from the EIS curves. As the amount of immersion time increases, the
electrochemical impedance plots maintain their original shape, but the diameter of the
semicircle in the Nyquist plot (Figure 10) sharply increases. At the same time, the |Z| vs.
frequency plot (Figure 11) shows that the phase angle of the BZ-Me rises as the immersion
time increases and shifts towards a higher frequency, reaching close to 70° after 24 h,
indicating that it is a pure capacitance impedance [60]. Based on these results, it appears that
BZ-Me’s ability to stop corrosion is because it creates a very strong barrier around the
surface of E24 steel. This layer stops the corrosion process from occurring.
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Figure 10. Nyquist plot of E24 steel at different immersion times in 1 M HCI solution at
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Figure 11. Bode modulus and angle phase plots of E24 steel at different immersion times in
1 M HCl at 293 K.
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From Table 3, it’s interesting that the values of R increase as the immersion time
increases, while the CPEg shows opposite trends. After being submerged for 24 h, R is
470.1 Q-cm? and CPEq is 33.9 uF-cm~2. This suggests that the E24 steel surface attracts
BZ-Me molecules to form a protective layer that impedes the charge transfer process
[61, 62]. Furthermore, changes in the morphology of the electrode surface due to roughness
and other irregularities of E24 steel cause the n value to decrease as the immersion period
increases.

Table 3. The values of the descriptor electrochemical impedance parameters E24 steel at different
immersion times in 1 M HCI at 293 K.

Time Rs (©2-cm?) Ret (Q2-cm?) CPEai (uF-cm~2) n
0.5 3.961 353.7 45 0.8927
2.661 391.9 40.6 0.8645
4 3.566 440.3 36.2 0.8798
24 2.449 470.1 33.9 0.8599

3.4. Adsorption isotherm

Adsorption isotherms are extremely beneficial for comprehending the mechanism beneath
organic electrochemical reactions [63]. During this process, molecules attach themselves to
iron atoms by interacting with their active sites or previously absorbed intermediate species.
Generally, adsorption isotherm models, such as Langmuir, Freundlich, and Temkin, are
commonly employed to define the nature of the interactions that occur between metals and
inhibitors. Nevertheless, the relationship between the concentrations of Ci./0 and Cim
demonstrates a linear correlation, suggesting that the Langmuir adsorption isotherm is
followed by BZ-Me’s adsorption from 1 M HCI solutions on the E24 steel surface
(Figure 12). Table 4 presents the associated adsorption parameters. The correlation
coefficient (R?=0.99) is near 1, proving the reliability of this technique, and it may be
calculated using Equation (16) [64]:

—m = + Cinh (16)

where 0 represents the coverage rate, K,qs denotes the adsorption constant, and Ciq, represents
the concentration of the inhibitor. The K, value represents the degree of adsorption
capability between the BZ-Me substance and the E24 steel surface. The least squares
approach is used to create a straight line for the adsorption parameters computation. The
equilibrium constant of the adsorption process is reliant on the standard adsorption-free
energy via the following Equation (17) [65]:

AG?, =—RT In(55.55K ) (17)

ads —
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The number 55.55 reflects the concentration of water in the solution, represented in
molarity, while R is the universal gas constant (8.314 J-K-1-mol-1), and T represents the
absolute temperature (298.15 K). Table 5 provides an overview of the relevant adsorption
parameters.
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Figure 12. Langmuir isotherm for adsorption of BZ-Me onto the E24 steel in 1 M HCI
solution at 293 K.

From this plot, the BZ-Me molecule has a significant inhibitory action and is effectively
adsorbed across the E24 steel surface, demonstrated by the higher value of Kags 0.39-10° L-mol.
Moreover, the negative adsorption-free energy value reveals the durability and spontaneity of
the resulting molecular barrier. A multitude of studies [66—71] show that the adsorption of
inhibitors happens via physical interactions when the AG?, values are around —20 kJ-mol~* or
less negative. Conversely, if the AG?, values are near —40 kJ-mol-! or more negative, the
adsorption of inhibitors proceeds via chemical interactions. Based on the data summarized in
Table 4, the adsorption value was between —20<AG?_ <—40, suggesting that the adsorption
process of BZ-Me on E24 steel involves a mix of physical and chemical adsorptions (physio-

chemisorption) [72].

Table 4. Adsorption parameters for BZ-Me through the E24 steel in 1 M HCI solution at 293 K.

Inhibitor Kads (L-mol~-1) R? AG?

ads !

BZ-Me 0.39-10° 0.99 -36.17

kJ-mol-1
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3.5. Surface analysis

To understand the act of adsorption of the BZ-Me onto the surface of the E24 steel, we
conducted a surface examination using the SEM method. Figure 13 (a, b) reports the
scanning electron microscopy (SEM) observations of E24 steel immersed in 1 M HCI alone
and with 1 mM of BZ-Me for 24 hours. Upon analyzing the morphology of E24 steel in
Figure 13a, we observed clear and distinguishable damage, characterized by visible pits,
caused by the aggressive action of hydrochloric acid (HCI). A significant transformation
occurred with the addition of 1 mM BZ-Me, as depicted in Figure 13b, where the surface
exhibited a much smoother appearance. This improvement can be attributed to the formation
of a protective barrier film of BZ-Me species across the surface of the E24 steel [73].

e e R ey o e 3 e R e -
Figure 13. SEM images of E24 steel exposed for 24 hours to 1 M HCI (a) and 1 mM of BZ-
Me (b).

In parallel, the energy-dispersive X-ray analysis (EDS) approach determines the
composition of a specimen’s surface [74]. Figure 14 (a, b) illustrates the energy dispersive
X-ray analysis (EDS) spectra of E24 steel immersed in 1 M HCI alone and with the addition
of 1 mM BZ-Me. Table 5 provides further details about the weight percentages of the
elements.

Based on Figure 14 and the data in Table 5, it is evident that BZ-Me has altered the
surface composition of E24 steel, reducing the percentage of certain elements, with some
elements no longer detectable due to the BZ-Me film covering them. The carbon percentage
notably increased from 1.3% to 2.7%. Additionally, Figure 14b shows a new peak with 0.9%
nitrogen, confirming the presence of a surface layer formed by chemical elements from BZ-
Me adhering to the metal surface. Moreover, the introduction of corrosion inhibitors led to
an increase in iron content from 73.8% to 85.1%, indicating the formation of a protective
film. This film acts as a shield, preventing corrosion and reducing iron breakdown or
oxidation. The decrease in oxygen (O) levels from 19.9% to 10.4% when inhibitors were
present suggests a slowdown in oxide production and oxidation processes. These findings
corroborate the conclusions drawn from PDP and EIS tests, supporting the existence of a
surface coating that inhibits metal dissolution.
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Figure 14. EDX spectra of E24 steel exposed for 24 hours in 1 M HCI (a) and 1 mM of BZ-

Me (b).

Table 5. Surface composition (wt%) of E24 steel after immersion of 24 h in 1 M HCI solution without and

with 1 mM BZ-Me.

Element (wt%) 1 M HCI BZ-Me
C 1.3 2.7
N 0.0 0.9
O 19.9 10.4
Cl 1.9 0.9
Fe 73.8 85.1
Cu 3.2 0.0
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3.6. DFT Calculations

3.6.1. Frontier molecular orbitals and quantum reactivity descriptors of the BZ-Me

Figure 15 shows the optimized geometry as well as HOMO, LUMO, and molecular
electrostatic potentials (MEP) of BZ-Me in its neutral form obtained in the gas phase using
DFT at the PBEPBE/6-31G+(d,p). It is observed that the HOMO and LUMO are delocalized
over the entire molecule of BZ-Me. The electrostatic potentials at the surface are represented
by different colors; red, blue, and green represent the regions of negative, positive, and zero
electrostatic potentials respectively. In particular, the negative regions (red color) of MEP
are related to electrophilic reactivity, and the positive regions (blue color) are related to
nucleophilic reactivity [75]. As seen, the negative electrostatic potentials are localized over
the oxygen atoms which are the potential sites for electrophilic attack. However, positive
regions are localized around the hydrogen atoms. The green region corresponds to
electrostatic potential halfway between the red and the blue and are potential sites for
intermolecular interactions.

Table 6 summarizes the values of some quantum chemical parameters for the optimized
structure of the BZ-Me inhibitor.

Table 6. The calculated global reactivity descriptors of the BZ-Me in the gas phase at DFT/PBEPBE/6-
31+(p,d).

DFT/PBEPBE/6-31+(p,d)

Property
Benzodiazepin

Enomo (V) -5.169
ELumo (eV) —2.356
AEgap (V) 2.813
IP (eV) 5.169
EA (eV) 2.356
x (eV) 3.762
n V) 1.406
S(evY 0.710
o' (eV) 3.327
o (eV) 7.089
AEback-donation (€V) -0.351
AN (eV) 0.375

Ay (V) 0.198
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HOMO LUMO

Optimized structure MEP

Figure 15. The optimized structures, HOMO, LUMO, and molecular electrostatic potentials
(MEP) of BZ-Me in its neutral form obtained in the gas phase using DFT at the PBEPBE/6-
31G+(d,p) basis set.

The high Exomo value for BZ-Me implies its good tendency to donate electrons to the
empty d-orbital of the metal while the low E_umo value indicates that the electrons from the
E24 steel surface are easily accepted by BZ-Me molecules. The HOMO-LUMO energy gap
(AEgsp) explains the molecular stability, chemical reactivity, and hardness of the inhibitor
[76—78]. In the chemical reactivity theory, the parameters like electronegativity, hardness,
and softness have proved to be very useful quantities. The electronegativity of the inhibitor
molecules is lower than the iron. Hence, electrons move from BZ-Me molecules with lower
electronegativity toward that of a higher value (E24 steel surface) until the equilibrium in
chemical potential is reached [77]. To calculate the fraction of electrons transferred, a
theoretical value for the electronegativity of bulk iron was used Fe=7 eV, and a global
hardness of n=0, by assuming that for a metallic bulk, ionization potential (I)=electron
affinity (A), because they are softer than the neutral metallic atoms. Obtained values of AN,
show that the inhibition efficiency resulting from electron donation agrees with Lukovits’s
study [79]. If AN<3.6, the inhibition efficiency of BZ-Me molecules increases by increasing
their electron-donating ability to the metal surface.
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Furthermore, the interaction between the inhibitor molecule and the metal surface can
be further demonstrated via the back donation AEpack-donaion €N€rgy. The process of back
donation is improved if the global hardness is positive and the energy of back donation
(AEpack-donation) Value is negative [80] and this is the case in BZ-Me molecules. Also, the
stabilizing energy of a system as it becomes saturated with electrons from the environment
is represented by the electrophilicity index (o) [81]. The o~ electron-donating power and o*
electron-accepting power of the molecules were calculated. It follows that a larger (o)
electron-accepting power value corresponds to a better capability of accepting charge,
whereas a smaller value of (o) electron-donating power value of a system makes it a better
electron donor [80].

3.6.2. Mulliken charge distribution and contour representation of ESP distributions

Figure 16 shows the Mulliken charges and contour representation of ESP distributions of
BZ-Me. Mulliken charge distribution offers valuable information regarding the mechanism
and mode of inhibition as well adsorption of inhibitor’s molecules on the E24 steel surface.
It has been stated that as the Mulliken charges of the adsorbed center become more negative,
the atom more easily donates its electron to the vacant orbital of the metal [78—-82]. It is
noted that oxygen atoms (O;=—0.379; Ox=-0.347) have high charge densities and are
mainly active centers, which have the strongest ability to bond to the metal surface. This is
confirmed by using ESP maps, in which it is possible to visualize the electron distribution,
and therefore identify the active centers in the molecule [83]. The contour maps of electron
density reveal that oxygen atoms in BZ-Me exhibit favorable interaction sites. Interaction
sites surrounded by a dark red contour contribute to forming the bonding interactions
between the E24 steel surface and BZ-Me molecules [84]. The dark red color in the contour
map of negative potential particularly surrounds oxygen molecules, whereas the light green
color is scattered in the positive potential region.

Figure 16. Mulliken charges and ESP distributions for BZ-Me.
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3.7. MD modeling results

To further explain the corrosion inhibition mechanism of BZ-Me, the adsorption pattern and
the coverage efficiency of the active molecules on the E24 steel surface were investigated
via MD simulations. The corresponding energy was calculated as follows [85].

E = Einter = E _(E + Einh) (18)
-E

ads total steel+sol

binding ads (19)

where E.qs IS the adsorption energy of the inhibitor molecules on E24 steel surface, Eoa 1S
the energy of the entire system containing the inhibitor molecules, water molecules, and iron
atoms, Ester+sol 1S the system energy of the iron atoms and water molecules, Eiqn is the energy
of the inhibitor molecules, Epinging is the binding energy of the inhibitor molecules on the Fe
(110) surface, Einr is the interaction energy between the inhibitor molecules and E24 steel
surface. For the adsorption system in this study, Eags and Einer Were equal. The side and top
views of the final stable configurations of BZ-Me adsorbed on the Fe (110) plane based on
MD simulations are shown in Figure 17. The corresponding E.gs are listed in Table 7.

In general, molecules adsorbed in a pattern parallel to the metal surface can provide
greater coverage and more consistency of the protective film, strengthening the mechanical
barrier function and providing a better protection effect [86, 87]. As shown in Figure 17, BZ-
Me molecules are almost adsorbed in parallel on the surface of Fe (110). These are due to
coordinate bonds formed when inhibitor molecules donate electrons to the unoccupied d-
orbital of iron or accept the electrons from iron through molecule heteroatoms.

As shown in Table 7, the Eaqs 0f BZ-Me are negative, further suggesting a spontaneous
adsorption process. However, a larger Epinging SUggests that the formed adsorption film is
firmer and can improve corrosion protection Generally speaking, a larger Epinging indicates a
tough binding of the inhibitor molecule to the metal surface, the molecules are inclined to
adsorb on the metal surface, exhibiting excellent inhibitive performance [87]. Based on the
calculated results, the Epinging Of BZ-Me molecules is relatively large, manifesting that it has
a certain degree of inhibition on E24 steel corrosion in HCI solution.

Table 7. Calculated values of Einteraction and Eninding (all in kcal/mol) obtained from MD simulations of BZ-
Me/Fe (110) surface.

System Einteraction Ebinding

BZ-Me/Fe (110) —99.2220 99.2220
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Figure 17. Equilibrium adsorption configuration of BZ-Me over the Fe-surface as determined
by MD.

Considering the effect of temperature on MD modeling; all simulation processes were
run until the simulation system reached a balance. Temperature fluctuation during

simulations is depicted in Figure 18, which demonstrates that the studied systems tend to
equilibrium at the end of the simulation process.

Forcite Dynamics Temperature
480

450

Temperature (K)

280 300
Time (ps)

Figure 18. Temperature equilibrium curve for BZ-Me/Fe (110) surface.
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Furthermore, to clarify inhibitor—steel interactions, RDF analysis computed from MD
trajectory data provides further insights into the mode of action between BZ-Me molecules
and Fe (110) surface. In this case, we succeeded in obtaining the calculation of the RDF
using [88, 89]:

1 1 & —r)
r) = x i 20
gAB( ) pBIocaI NA ;; 47'Cr2 ( )

where pBiocal represents the particle density of B averaged over all shells around the particle.

As was discussed in previous parts, the BZ-Me compound can easily adsorb onto the
E24 steel surface. Therefore, efforts were devoted to determining the significant interactions
during the adsorption mechanism by measuring the typical bonding length. For this reason,
the radial distribution function was calculated for BZ-Me with the help of MD trajectories
and depicted in Figure 19. It is well known that the peak occurs at 1-3.5 A related to small
bond length and the kind of interaction is a chemisorption type, while a distance greater than
3.5 A is associated with physisorption [90]. A look at RDF patterns shows that prominent
peaks for Fe—O in BZ-Me molecule are smaller than 3.5 A (Fe—O; 2.47). This supports the
conclusion that a chemical interaction can occur during the adsorption of the BZ-Me onto
the steel surface as indicated by the values of AGy4s=—36.17 kJ/mol.

BZ-Me/Fe(110)

Forcite Analysis - RDF
2.47

-

l *“ H | * Hl Ll ‘ ,xlulhulmlklk L{I!ﬁxkikxll[glll,hu

r (Angstrom)
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Figure 19. RDF of the BZ-Me on the Fe-surface in a corrosive medium.

4. Conclusion

This study focuses on synthesizing a novel derivative, (Z)-7-methyl-4-(2-oxopropylidene)-
[1,5]-benzodiazepin-2-one (BZ-Me), belonging to the benzodiazepin-2-one family. BZ-Me
acts as a corrosion inhibitor for E24 steel, investigated in aggressive solutions using
potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and
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scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Tafel
polarization results indicate BZ-Me adheres strongly to E24 steel, exhibiting mixed-type
behavior favoring anodic reactions. EIS shows a significant corrosion rate reduction (88.55%
at 1 mM BZ-Me) with frequency dispersion described by a constant phase element (CPEgy).
Kinetic parameters suggest BZ-Me follows Langmuir adsorption, combining physical and
chemical adsorptions on the steel surface. SEM-EDS confirms BZ-Me creates a protective
layer on E24 steel, effectively inhibiting corrosion in 1 M HCI, highlighting its potential for
diverse industrial applications. Furthermore, the modeling investigations using molecular
dynamics (MD) simulations and electronic quantum mechanics (DFT) calculations
underscored the interfacial adsorption and formation of a corrosion-resistant layer by the
BZ-Me inhibitor on the E24 steel surface, consistent with the experimental findings.
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