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Abstract 

The inhibitive action of Schinus Terebinthifolius Leaves Essential Oil (STLEO) on the corrosion 

of E24 steel in 1 M HCl solution was investigated using open circuit potential-time 

measurements (OCP), potentiodynamic polarization (PDP), electrochemical impedance 

spectroscopy (EIS), and weight loss (WL). Combining EDX assessment with scanning electron 

microscopy (SEM) allowed for an investigation of the surface morphology of E24 steel. The 

highest inhibitory efficiencies for the WL, EIS, and PDP methods at 1 g/L of STLEO are 89.33, 

85.36, and 88.63%, respectively. It was found that the corrosion inhibition performance depends 

on the concentration of the studied inhibitor and the solution temperature. Based on Langmuir’s 

isotherm, the tests have demonstrated that STLEO inhibits the corrosion E24 steel in acidic 

media through a physical adsorption process. The surface morphological observation revealed 

that the Essential oil forms a barrier that inhibits the transfer of active corrosive species to E24 

steel surfaces. Insights from experimental approaches emphasize STLEO’s potential as an 

effective green corrosion inhibitor, offering valuable contributions to practical corrosion 

protection methods, particularly beneficial for industries relying on E24 steel components in 

corrosive environments. 
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1. Introduction 

Carbon steel has numerous applications as flow lines, constructions of tanks, and petroleum 

refinery equipment owing to its simple fabrication process and low cost [1]. However, it 

undergoes acid pickling or cleaning which results in severe corrosion. Currently, the 

application of corrosion inhibitors is widely adopted method for safeguarding metals against 

corrosion. Such inhibitors can significantly decrease the corrosion rate when added to a 

corrosive environment in small concentrations. Most corrosion inhibitors are organic 

compounds. Their inhibition property relies on their functional group, which adsorbs on the 

metal surface. Most of the efficient organic compounds that act as inhibitors have oxygen, 

sulfur, nitrogen atoms and multiple bonds through which they adsorb on metal surface  

[2–9]. The creation of a protective barrier film on the metal surface due to these molecules’ 

chemical or physical adsorption may be the cause of the inhibition. Nevertheless, synthetic 

inhibitors are more expensive than natural inhibitors and require proper selection and dosing 

to prevent environmental damage and interference with other chemical processes in the 

system. 

Accordingly, efforts are directed towards the use of plant extracts as corrosion 

inhibitors. Numerous researchers reported the successful use of natural plant extracts on the 

corrosion inhibition of different metals in aggressive media as they are eco-friendly, cheap, 

easily obtainable, biodegradable and renewable source for wide range of potential corrosion 

inhibitors [4, 10–29]. 

Mamudu and co-workers [30] tested the efficiency of Dillenia suffruticosa leaves 

extract (DSLE) on the corrosion of mild steel in 1 M HCl. DSLE exhibits notable efficacy 

as a corrosion inhibitor for MS in an acidic environment. The inhibition efficiency (IE) 

demonstrates a positive correlation with the concentration of the extract, ultimately reaching 

a maximum value of 81.4% at the optimum concentration of 1000 mg/L of the extract 

investigated. In a new study, Eddahhaoui et al. [31] evaluated the inhibition efficiency of 

ethanolic extract of Chamaerops humilis (CHFE) on the corrosion of low-carbon E24 steel 

in 1 M HCl solution using the weight loss, potentiodynamic polarization and electrochemical 

impedance spectroscopy. The results showed that inhibition efficiency increased with 

increasing with increasing the C. humilis extract concentration and reached up to 93% at a 

concentration of only 500 ppm. Thermodynamic parameters suggest that the adsorption of 

this extract on the metal surface occurs mainly via physisorption which is inconsistent with 

Langmuir adsorption isotherm. In the same concept, recently, Zhu et al. [32] tested the 

inhibitive properties of Zea mays bracts extract (ZMBE) on the corrosion inhibition of mild 

steel in 1 M HCl. The results revealed that the corrosion inhibition mechanism of ZMBE for 

MS is “geometric coverage” effect. The active ingredients in ZMBE can spontaneously 

adsorb on the MS surface and follow well with the Langmuir isotherm, forming a monolayer 

adsorption film. 

Schinus Terebinthifolius (ST) shrub or small tree that belongs to the Anacardiaceae 

family, and is native to South America (Brazil, Argentina, Paraguay and Uruguay), generally 
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colonizing open areas, and is particularly found on forest borders and river margins. This 

species adapts easily to climate change. It establishes itself through an extensive 

geographical distribution through plasticity of the species. The wood is used for posts, 

fuelwood, and charcoal and the plant is also used as a feed supplement for animals. It is also 

used to obtain essential oils and resins, which are used in leather tanning, pharmaceuticals, 

cosmetics, the perfumery industry, or the strengthening of fishing nets. Besides, the fruits 

are highly appreciated as a condiment in foreign cooking, mainly in Europe, where it is used 

as a spice, either alone or in mixtures with pepper. While the fruits of Schinus 

Terebinthifolius are commonly used as spices, the bark, leaves, and roots are traditionally 

applied in folk medicine [33]. 

Due to the encouraging results presented by these studies and the continuous research 

for an affordable and eco-friendly corrosion inhibitor, this research aimed to investigate the 

effectiveness of Schinus Terebinthifolius Leaves Essential Oil (STLEO) as a corrosion 

inhibitor of E24 steel in acidic solutions. To this end, the anticorrosive properties of STLEO 

were investigated by gravimetric and electrochemical techniques such as electrochemical 

impedance spectroscopy and potentiodynamic polarization curves. Scanning electron 

microscopy (SEM), were also employed to characterize the surface of the metal in order to 

support the electrochemical techniques. 

2. Material and Methods 

2.1. Plant material and extraction of essential oil process 

The Schinus Terebinthifolius Leaves (STL) were collected from Morocco, the region of 

Rabat (34°01’53.34”) in the month of January–February. To carry out the extraction, the 

plant leaves were crushed after being dried out of moisture for two weeks. 

Using a device similar to a Clevenger, STLEO was extracted using hydrodistillation. 

Initially, a 2000 mL flask was filled with 200 g of crushed STL at a ratio of 1:3 plant material 

to water. The flask was heated for six hours until no more essential oil could be extracted. 

After that, the water and essential oil mixture was dried and put into dark bottles for storage. 

The yield of essential oil is approximately 0.28%±0.01. Belhoussaine et al. [34] reported 

the same results (0.28%), whereas, Santana et al. obtained a lower yield (0.17%) [35]. 

2.2. Material and Solutions 

The study was carried out on E24 steel sheets of chemical composition (wt.%): 0.110% C, 

0.240% Si, 0.021% P, 0.16% S, 0.011% Ti, 0.009% Co, 0.077% Cr, 0.47% Mn and 

99.046% Fe. The experiments were carried out in a1 M HCl solution by diluting 37% HCl 

with distilled water. STLEO was added to the blank solution to obtain the desired 

concentrations (i.e., 0.25, 0.5, 0.75, and 1 g/L) at temperatures ranging from 293 to 323 K. 
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2.3. Mass loss 

Square E24 steel coupons of dimensions 3.0×3.0×0.3 cm3 were polished with emery paper 

(600–800–1500–2000), thoroughly washed with distilled water, and lastly dried with 

acetone then weighed before measurement. Subsequently, they were immersed in 50 ml 

1.0 M HCl solutions for 24 hours at 293 K, in the absence and presence of different STLEO 

concentrations. Submersion was controlled by a water thermostatic bath. Following 

immersion, the specimens underwent cleaning with water and acetone and were then dried 

in a desiccator. Analytical balance was used to determine the weight reduction. Each test 

was repeated three times to verify its reproducibility. 

The following formulas were used to calculate the E24 steel’s corrosion rates (CR) and 

inhibition efficiency IECR(%) based on the measurement of mass loss [36]: 

 
W

CR
S t





 (1) 
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0
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% 100CR
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
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The immersion time (t) is expressed in hours, while the weight loss (W) is expressed in 

grams. Whereas S represents the sample’s exposed area in cm2. The corrosion rates in the 

absence and the presence of the STLEO are represented by 0
corrCR  and inh

corrCR , respectively. 

2.4. Electrochemical measurements 

Electrochemical tests were achieved in an electrochemical cell of three electrode mode. The 

working E24 steel electrode (0.78 cm2), saturated calomel (SCE) as the reference and a 

platinum foil with a big expose area served as the counter electrode (CE). These studies were 

conducted using both stationary (PDP) and transient (EIS) approaches. For measurement, 

every potential was matched to the SCE. 

Using a PGZ100 potentiostat, the working electrode was submerged in a 1 M HCl test 

solution for thirty minutes, or until the steady state corrosion potential (Ecorr) was attained. 

Polarization curve measurements were obtained at a scan rate of 1 mV/min starting from 

cathodic potential (Ecorr=–00 mV) going to anodic direction (Ecorr=–100 mV). The 

frequency range for electrochemical impedance spectroscopy (EIS) measurements was 

100 kHz to 0.01 Hz with applied potential signal amplitude of ±10 mV around the rest 

potential. 

The inhibitory efficacy of the test chemical was calculated by employing the subsequent 

formulas [37, 38]. 
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0
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IE
i


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where 0
corri  and inh

corri  represents the corrosion current density without and with STLEO, 

respectively. 
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where inh
ctR  and 0

ctR  are the values of the charge transfer resistance (Ω cm2) obtained from 

EIS measurements fitting data to an electrical equivalent circuit in the absence and presence 

and absence of STLEO, respectively. 

2.5. Surface analysis by scanning electron microscopy 

Scanning Electron Microscopy (SEM) was employed to characterize the surface morphology 

of E24 steel samples in the absence and presence of STLEO with JOEL Quanta 200 FEI 

Company scanning electron microscope. The accelerating beam’s 20 kV energy is put to 

use. The equipment has a backscattered electron detector and a complete X-ray 

microanalysis apparatus (EDS detector). 

3. Results and Discussion 

3.1. Gas chromatography–mass spectroscopy analysis 

The active compounds present in STLEO with their retention times are displayed in Table 1. 

Thirty-one compounds were identified in STLEO. The results revealed that Limonene 

(23.22%), followed by Spathulenol (14.34%), -ocimene (13.32%), -terpinene (9.45%) and 

Sabinol (5.07%) are present as the major components of this oil. Belhousaine et al. [34] has 

found the same results, with limonene as major compounds. The later was found to have a 

good inhibitory effect in the work of Bensabah et al. [39], in other works limonene was used 

to improve the corrosion resistance of epoxy coatings [40]. 

The major compounds are also indicative of the antioxidant and anti-bacterial activities 

of STLEO. The bioactivity of leaf extracts is attributed to phytochemical constituents. 

Numerous chemical substances, including phenolic compounds, sesquiterpene 

hydrocarbons, monoterpene hydrocarbons, oxygenated monoterpenes, and oxygenated 

sesquiterpene, are present in the STLEO [34, 35, 41–43]. 

Generally, the chemical makeup of STLEO varies according to the section of the plant 

being extracted, the extraction methods, and the surrounding environment. 

Table 1. Chemical composition of the STLEO. 

Retention time Name of detected compound Formula % 

11.47 -ocimene C10H16 13.32 

11.64 Camphene C10H16 0.91 

12.02 -phellandrene C10H16 0.96 

12.13 -pinene C10H16 1.48 

12.33 -myrcene C10H16 4.22 
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Retention time Name of detected compound Formula % 

12.74 -terpinene C10H16 9.45 

13.13 Limonene C10H16 23.22 

13.98 Terpinolene C10H16 2.09 

14.53 p-menth-2-en-1-ol C10H18O 0.62 

14.60 -campholenal C10H16O 0.20 

14.89 Pinocarvéol C10H16O 0.40 

14.99 Verbenol C10H16O 0.28 

15.30 Carvenone C10H16O 1.26 

15.42 Terpinen-4-ol C10H18O 0.37 

15.49 p-cymen-8-ol C10H14O 0.77 

15.84 Sabinol C10H16O 5.07 

16.41 Carvone C10H14O 0.27 

16.60 Piperitone C10H16O 0.35 

16.92 Phellandral C10H16O 0.42 

17.08 Thymol C10H14O 1.75 

17.62 Caryophyllene oxide C15H24O 0.28 

17.71 Citronellol acetate C12H22O2 2.25 

17.86 Géranyl acetate C12H20O2 0.50 

18.33 -gurjunene C15H24 0.53 

18.53 -elemene C15H24 0.26 

18.95 Caryophyllene C15H24 0.41 

19.25 Alloaromadendrene C15H24 0.66 

19.76 Germacrene D C15H24 2.00 

20.00 -elemene C15H24 0.42 

20.22 -cadinene C15H24 0.35 

21.04 Spathulenol C15H24O 14.34 

 

3.2. Weight loss measurements 

Weight loss measurements were conducted to assess the impact of inhibitor concentrations 

on the corrosion inhibition of E24 steel in a 1 M HCl solution after 24 h. Figure 1 illustrates 

the corrosion rate and inhibition effectiveness as a function of different inhibitor 

concentrations (0.25 to 1.0 g/L) [44, 45]. 
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It is clearly observed that the corrosion rate of E24 steel is significantly reduced with 

increasing STLEO concentration. This reduction in corrosion rate is attributed to the 

adsorption of the STLEO inhibitor onto the steel surface, forming a protective layer that 

hinders the access of aggressive ions to the metal surface [46]. The inhibition efficiency was 

found to be particularly high, reaching 96.1% in a 1 M HCl solution containing 1 g/L of 

STLEO. This achievement demonstrated the potential of STLEO as an effective corrosion 

inhibitor [47]. 

  

 (a) (b) 

Figure 1. Evaluation of Corrosion Rate CR and Inhibition Efficiencies IECR (%) with different 

concentrations of STLEO after 24 hours of immersion time at 293 K for E24 steel in 1 M HCl. 

3.3. Polarization results 

3.3.1. Open Circuit Potential measurements (OCP) 

OCP is an essential technique that enables the determination of the corrosion behavior. 

Figure 2 shows that the OCP of E24 steel was shifted to less negative values in the presence 

of STLEO. Such positive shift indicates the influence of STLEO on the dissolution process 

of E24 steel occurring at anodic sites. An inhibitor can be categorized as either cathodic or 

anodic when the change in the corrosion potential (Ecorr) value is more than 85 mV. Thus, 

STLEO can be considered a mixed-type inhibitor of E24 steel in 1 M HCl solutions because 

its highest displacement is about 60 mV [11]. 
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Figure 2. Evolution of the OCP as a function of exposure time of E24 steel in a 1 M HCl 

solution without and with various concentrations of STLEO at 293 K. 

3.3.2. Concentration effect 

The potentiodynamic polarization curves for E24 steel in 1 M HCl in the absence and 

presence of various concentrations of STLEO at 293 K are depicted in Figure 3. It is clearly 

observed that the addition of STLEO suppresses both anodic and cathodic parts of the 

polarization curves indicating it acts as mixed-type inhibitor for E24 steel corrosion in 

1 M HCl. Moreover, it is noted that the addition of STLEO shifts the corrosion potential of 

mild steel to more positive values. 

The electrochemical parameters: corrosion potential, Ecorr; anodic and cathodic Tafel 

slopes, a, c; and corrosion current density (icorr), obtained from these curves together with 

the percentage of inhibition efficiency (%P) are given in Table 1. 

 

Figure 3. Potentiodynamic polarization curves for E24 steel in 1 M HCl without and with 

various concentrations of STLEO at 293 K. 
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Table 2. The electrochemical polarization characteristics for the corrosion of E24 steel in 1 M HCl without 

and with various concentrations of STLEO at 293 K. 

 

[STLEO] 

g/L 

Ecorr 

mV/SCE 
icorr 

μA/cm2 
c 

mV/dec 

a 

mV/dec 
IE, % 

0 –4881.4 174.81.11 –94.72.4 93.33.1 – 

0.25 –4620.5 49.50.97 –140.32.9 54.21.1 72.32 

0.5 –4560.6 32.21.39 –143.43.9 61.1  1.4 81.56 

0.75 –444  0.8 25.1  0.99 –157.6  4.8 64.4  0.9 85.93 

1 –431  1.1 19.9  0.81 –201.5  8.1 81.9  1.3 88.63 

The tabulated data revealed that corrosion current density (icorr) decreases from 174.8 

to 19.9 μA·cm–2 with increasing STLEO concentrations accompanied with an increase in %P 

to reach 88.63% at a concentration of 1 g/L. The slight variations in anodic Tafel slopes and 

cathodic Tafel slopes (βa and βc), in the presence STLEO, indicates that the inhibiting action 

is taking place by simple blocking of the available anodic and cathodic sites on the metal 

surface [41]. The βc and βa are given in these formulas, βc = 2.303RT/nF and 

βa = 2.303RT/(1–)nF where R is the gas constant, 8.314 Joule/mol·K; T is the absolute 

temperature, α is the “symmetry factor” nominally 0.5, F = 96540 C/mol is Faraday’s 

constant; and n is the number of electrons transferred in the rate determining step. As seen, 

values of βa are generally smaller βc than and are about 60 mV indicating exchange of two 

electrons during metal dissolution process [42]. Moreover, the change in the Ecorr value 

observed in Table 1 does not exceed 85 mV, it can be concluded that the inhibitor under 

examination exhibits a mixed nature. 

3.3.3. Temperature effect 

In order to examine the effect of temperature on STLEO’s inhibitory efficacy, the optimal 

concentration (1 g/L) was used at temperatures ranging from 293 to 323 K. The PDP curves 

obtained in 1 M HCl, both in the absence and presence of 1 g/L of STLEO at various 

temperatures, are displayed in Figure 4. Table 3 shows the electrochemical parameters 

obtained by extrapolating the Tafel lines from the polarization curves. 

The obtained results reveal that the corrosion rate increases at elevated temperatures for 

both blank and inhibited solutions as well as the inhibition efficiency of STLEO decreases 

upon increasing temperature. This may be attributed to many factors such as the degradation 

of the inhibitor’s structure or a weakening of the attraction forces responsible for the 

adsorption phenomenon. 
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Figure 4. Polarization curves relating to the behavior of E24 steel at different temperatures in 

the absence and presence of 1 g/L STLEO 

Table 3. Change in E24 steel’s electrochemical characteristics with temperature in the absence and presence 

of 1 g/L STLEO. 

T, K Inhibitor Ecorr, mV/SCE icorr, μA/cm2 IE, % 

293 
Blank –4881.4 174.81.11 – 

STLEO –431  1.1 19.9  0.81 88.63 

303 
Blank –4761.6 234.72.38 – 

STLEO –451  0.9 38.11.10 83.77 

313 
Blank –473  2.1 341.72.95 – 

STLEO –475  1.3 80  0.90 80.56 

323 
Blank –466  0.9 735.6  3.15 – 

STLEO –4832.1 199.22.65 72.92 

The activation and thermodynamic parameters are of great importance for elucidating 

the mechanism of corrosion inhibition of different metals. The activation and 

thermodynamic parameters (apparent activation energy (Ea), enthalpy (ΔHa) and entropy 

(ΔSa) ) for E24 steel in 1 M HCl in the absence and presence of 1 g·L–1 STLEO extract were 

obtained from the Arrhenius and transition state plots shown in Figure 5 according to the 

following equations [36]: 

   a
corrln ln

E
i A

RT
    (5) 
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where R is the gas constant, T is the absolute temperature, A is the Arrhenius pre-exponential 

factor, N is the Avogadro number, and h is the Plank constant. 

 

Figure 5. Arrhenius (a) and ln (icorr/T) (b) plots as a function of 1000/T in a 1 M HCl solution 

without and with 1 g/L of STLEO at various temperatures. 

The calculated parameters for solutions containing 1 g/L of STLEO and the 

corresponding blank solution are given in Table 4. 

Table 4. Activation parameters for the E24 steel dissolution in 1 M HCl without and with 1 g/L STLEO. 

 
Ea 

kJ mol–1 

ΔHa 

kJ mol–1 

ΔSa 

kJ mol–1 
Ea–ΔHa 

Blank 36.61 34.05 –86.53 2.56 

1 g STLEO 60.04 57.48 –24.39 2.56 

As shown in Table 4, the Ea for the inhibited solutions (60.04 kJ·mol–1) is higher than 

the blank solution (36.61 kJ·mol–1). Due to the formation of a protective film, the inhibitor 

with a higher Ea introduces greater energy barriers to the corrosion process and to the 

dissolution of metals [48]. The values of ΔHa reported in Table 5 are close to Ea and positive. 

This illustrates the endothermic nature of the dissolution of the steel in the 1.0 M HCl 

solution. [49]. In another way, standard entropy (ΔSa), which describes the system’s 

randomness, increases in the presence of inhibitors, implying a spontaneous reaction. 

3.4. Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is an influential non-destructive method 

used to investigate electrochemical systems. It is being broadly applied in the corrosion and 

electrochemistry fields to study the corrosion inhibition of different compounds and predict 

the corrosion rates of different metals. Figure 6 reveals that the Nyquist impedance plots for 
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E24 steel after 1 hour of exposure to 1 M HCl in the absence and presence of STLEO consist 

of depressed capacitive semicircle signifying that the dissolution process of E24 steel occurs 

under activation control. The depressed capacitive loop is ascribed to dispersion effects, 

which have been attributed to roughness and inhomogeneities on the surface during 

corrosion [50]. 

The Bode modulus plots demonstrate that the impedance increases gradually with 

increases in concentration, indicating a higher inhibition efficiency of STLEO. The phase 

angle value increased significantly with increasing inhibitor concentration. It was noted that 

the phase angle values were always higher in the presence of STLEO compared to the blank, 

but lower than –90, indicating the non-ideal capacitor [51]. The spectra obtained showed 

show a one-time constant, which is attributed to the electrical double layer [52]. 

The electrochemical impedance parameters achieved by fitting the impedance curves 

to a simple equivalent circuit model (Figure 6) which includes the solution resistance Rs and 

the constant phase element (CPE) which is employed to analyze the data collected from the 

impedance in place of a pure capacitor due to the non-ideal behavior of the metal surface. 

The CPE is placed in parallel to charge transfer resistance element, Rct. The Rct value is a 

measure of electron transfer across the surface and is inversely proportional to corrosion rate.  

Nyquist impedance plots were analyzed using Z-view software. 

Table 5 displays the obtained impedance parameters. Equation 4 was used to calculate 

the inhibition efficiency for electrochemical impedance spectroscopy curves. 

 

 

Figure 6. Nyquist, Bode modulus, Phase angle plots and Equivalent Electric Circuit of E24 

steel in 1 M HCl solution in the absence and presence of different concentrations of STLEO 

at 293 K. 
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The tabulated data revealed that, in contrast to the values of Cdl, which showed a 

considerable drop, the addition of STLEO constantly boosted the charge transfer resistance 

values, which increased with increasing inhibitor concentration. This may be attributed to 

the adsorption of a sizable number of molecules on the surface of E24 steel, which modified 

the metal/electrolyte interface by causing an important rise in the double electric layer 

thickness. 

Table 5. EIS data recorded for E24 steel in 1 M in the absence and presence of different concentrations of 

STLEO at 293 K. 

[STLEO] 

g/L 

Rs 

Ω·cm2 

Rct 

Ω·cm2 

CPEdl 

µF·cm– 2 
n 

EI 

% 
 

0 1.920.45 31.141.35 511.13.25 0.7250.002 – – 

0.25 1.860.40 108.30.98 92.82.01 0.7230.003 71.25 0.7125 

0.5 2.390.27 153.01.25 65.71.95 0.7250.004 79.65 0.7965 

0.75 2.070.17 187.52.19 53.41.48 0.7080.003 83.39 0.8339 

1 4.230.29 212.73.81 47.30.98 0.7340.005 85.36 0.8536 

3.5. Adsorption isotherm 

Adsorption of molecules on the metal surfaces plays an important role in inhibition of 

corrosion. The adsorption isotherm can give fundamental details about how the inhibitor 

interacts with the E24 steel surface [53]. Thus, Langmuir isotherm has been tested to adapt 

the surface coverage degree (θ) obtained for STLEO. It was found that the plot Cinh/θ against 

Cinh (Figure 7) gives a straight line with a correlation coefficient of 0.999 providing that the 

adsorption of STLEO on the E24 steel surface obeys the Langmuir adsorption isotherm. This 

isotherm can be represented by [54]: 

 inh
inh

ads

1

θ

C
C

k
   (7) 

Cinh represents the inhibitor concentration, while kads is the adsorption process’s equilibrium 

constant which is linked to the free energy of the adsorption (ΔGads) according to the 

following equation [45, 51]: 

  ads ads
ln 55.5G RT k    (8) 

where R is the molar gas constant, T is the absolute temperature in Kelvin and 55.5 is the 

molar concentration of water in solution. 
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Figure 7. Langmuir’s isotherm adsorption model of STLEO on the E24 steel surface in 

1 M HCl at 293 K. 

Table 6. Calculated adsorption parameters for the adsorption of STLEO on E24 steel surface. 

 

Inhibitor K, mol– 1·L R2 
0
adsG , kJ·mol– 1 

STLEO 12.65 0.99 –15.96 

As seen from Table 6, the negative value of 0
ads

G  reflects the spontaneity of the 

adsorption process of STLEO and the stability of the adsorbed layers on the E24 steel surface 

in 1 M HCl solutions. Usually, values of ΔGads up to –20 kJ·mol–1 indicate an electrostatic 

interaction between the charged molecules and the metal (physical adsorption) [10, 13, 50]. 

Therefore, it could be concluded that STLEO inhibits the corrosion of E24 steel in acidic 

media through physical adsorption mechanism [55]. Physical adsorption is typically 

achieved through electrostatic attraction between charged metal surfaces and charged 

organic substances [56]. It can also be facilitated through dispersion and induction forces 

related to the polar functional groups in organic molecules. So, the behavior of STLEO may 

be probably due to the adsorption of cationic moieties of the extracted molecules,  

-electrons, free lone-pair nitrogen and oxygen heteroatoms electrons and other polar groups 

present in STLEO over the E24 steel surface. Conversely, due to the low electron-donating 

ability of cations, the tendency to chemical adsorption is very weak which supports the 

physical adsorption mechanism of STLEO on E24 steel surface in the acidic environment 

[1, 12, 57]. 
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4. SEM observation 

Figure 8 shows the E24 steel’s surface state as observed by SEM analysis following a 

24 hour immersion in a 1 M HCl solution (a) and 1 g/L of STLEO (b). The E24 steel surface 

seems rough damaged and severely corroded due to the aggressive attack of 1 M HCl in 

12 (a). On the other hand, in 12 (b), the corrosion activity was suppressed as seen from the 

decrease in localized corrosion areas and the metal coupons appeared smooth. This is due to 

the adsorption of the STLEO on the steel surface forming a protective barrier against 

corrosion activity. 

  

 (a) (b) 
Figure 8. Micrographs showing of E24 in without inhibitor (a) and with 1 g STLEO (b) after 

24 hours of immersion in 1.0 M HCl solution. 

Furthermore, to identify the elemental composition of E24 steel samples before and 

after the addition of STLEO, EDX analysis was performed and analyzed. Figure 9 shows the 

EDX spectra of E24 steel in the absence and presence of 1 g/L of STLEO in 1.0 M HCl 

solution after 24 hours of immersion. For the blank solution, the presence of oxygen and iron 

atoms suggests the presence of corrosion products composed of iron hydroxide and/or oxide 

(Figure 9a). However, the oxygen peak is much larger in the presence of STLEO (Figure 9b), 

which is certainly due to the adsorption of active ingredients of STLEO on the metallic 

surface. The presence of Cl atom suggested that the formed film by STLEO blocks the attack 

by chloride ions, which accumulate on the film surface. 

These findings are in quite good agreement with the results obtained previously from 

electrochemical measurements. They confirm the adsorption of STLEO on E24 steel surface 

and the formation of a protective layer from corrosive ions. 
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Figure 9. EDX spectra of E24 steel without inhibitor (a) and with inhibitor 1 g/L of STLEO (b) 

in 1.0 M HCl solution after 24 hours of immersion. 

5. Conclusion 

Our findings indicate that Schinus Terebinthifolius leaf essential oil is a potent corrosion 

inhibitor for E24 steel in 1 M hydrochloric acid medium that is both effective, of natural 

origin and environmentally friendly. The inhibitory efficacy obtained increases with 

concentration, reaching 88.63% at 1 g/L, and decreases with increasing temperature. The 

curves indicate that our extract acts mainly as a mixed-type inhibitor with predominantly 

anodic action. 

EIS results show that the addition of STLEO leads to a decrease in Cdl value and an 

increase in Rct values and thus a reduction in CR corrosion rate, indicating that our inhibitor 

is adsorbed at the metal-electrolyte interface, and the circuit model matches the data obtained 

and an analogous model has a constant phase element. 

The negative value of 0
ads

G  confirms the spontaneous nature of the adsorption process 

and the stability of the adsorbed double layer on the metal surface, while its absolute value 

underlines that the interactions between the inhibitor and the metal surface are physical, 

indicating mixed adsorption. 
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The adsorption of STLEO molecules follows the Langmuir adsorption isotherm model. 

In addition, SEM/EDX examination confirms the presence of a protective protective 

adsorbed film deposited on the metal surface. 

These conclusions are made more reliable by the consistency observed in the 

gravimetric, EIS and potentiodynamic polarization results. 
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