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Abstract 

Reinforced concrete foundation (RCF) faces the challenges of early reinforcement concrete 

corrosion. Understanding such concrete corrosion mechanisms and developing effective 

mitigation strategies is crucial to ensure the durability of the RCF. The study aimed to 

investigate the effectiveness of leaf extracts from Ziziphus budhensis (LEZB) and Tagetes 

erecta (LETE) as eco-friendly corrosion inhibitors in a saturated Ca(OH)2 solution with a pH of 

around 11.5, considered as SCP (simulated concrete pore) solution. The weight loss (WL) 

experiment lasted over four months to assess the ability of these leaf-based extracts to inhibit 

corrosion of mild steel rod (MiSR) in SCP solutions with 500 ppm, 1000 ppm, 2000 ppm, 

4000 ppm LEZB and LETE at laboratory temperature (i.e., 25°C). The highest corrosion 

inhibiting efficiency percentage reached at 4000 ppm LEZB, with 91.22% and 81.48% efficacy 

measured by gravimetric and electrochemical (EC) methods, respectively. Corrosion current 

density decreases with increasing LEZB or LETE concentrations in the SCP, as revealed by the 

EC study. Both extracts contain phyto-molecules (polyphenols, alkaloids, and flavonoids), 

which adhere to the surface of MiSR in SCP solution, thus impeding cathodic, anodic, or both 

reactions. In addition to WL and EC analyses, we used scanning electron microscopy with 

energy dispersive X-ray (SEM/EDX) and white light interferometry (WLI) techniques to study 

changes in the surface morphology of a passive corrosion barrier film formed on MiSR surface 

after being immersed for approximately four months in SCP solution without and with LEZB 

or LETE. 
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1. Introduction 

Reinforced concrete infrastructures, abbreviated as ReCIs, are widely utilized in 

modern engineering and construction sectors due to their exceptional ability to withstand 

heavy loads and harsh environmental conditions. Their durable nature ensures that these 

structures have a long lifespan, making them a choice for various construction projects [1]. 

However, ReCIs, despite their strength and durability, are prone to a significant drawback: 

the rapid corrosion of the reinforcing materials when they come into contact with corrosive 

atmospheres, such as those containing high amounts of salt or pollutants. This corrosion can 
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weaken the structure and necessitate costly maintenance and repairs [2]. The corrosive 

atmospheres in marine environments, with high levels of chloride ions, and polluted 

atmospheres in industrial and urban areas, with excessive CO2, sulfate, and sulfide gases [3], 

cause the pH of concrete aggregates to drop from 12.5–13.5 to less than 10 [4]. When the 

pH of the concrete mix falls below 10, it leads to corrosion of reinforcing metal (ReM) in 

the concrete [5]. The passivity of the reinforcing steel is contingent upon the OH 

concentration of the concrete pore solution. Several sources have indicated that passivity 

breaks down when the Cl− to OH− ratios exceed a specific threshold chloride concentration 

[6]. Beyond this threshold, the corrosion process is accelerated [7]. These are the main 

reasons for the rapid degradation of reinforced concrete structures through rust formation on 

the surface of ReM instead of the formation of protective diffusion barrier passive films [8]. 

Therefore, one of the inherent limitations of structural infrastructures constructed from 

reinforced concrete is the gradual deterioration of the metallic reinforcement in urban cities 

of Nepal [9, 10]. Over time, ReM interactions with the surrounding environment result in 

corrosion damage, which weakens the reinforcement and ultimately threatens the structural 

integrity of the ReCIs [11]. Failure to address this issue can lead to costly repairs, pose safety 

risks, and shorten the lifespan of the structural infrastructures [12]. Therefore, it is essential 

to implement appropriate measures to prevent, mitigate, or repair corrosion of ReCIs [13]. 

Various strategies have been employed, including electrochemical removal of chlorine [14], 

re-alkalization of concrete [15], cathodic protection methods [16, 17], and the use of 

inhibitors. 

Among these corrosion-preventative methods for the ReCIs, corrosion-inhibiting 

substances like inorganic compounds [18, 19], synthetic organic compounds [20, 21], or 

phyto-molecules [22] act as concrete additives to mitigate reinforcement concrete corrosion. 

Corrosion-inhibiting substances are distinguished by their high effectiveness, eco-

friendliness, and cost-efficiency [23, 24]. Comparatively, synthetic organic compounds have 

gained favor as corrosion inhibitors over most inorganic compounds due to their toxic nature 

and reduced environmentally benign characteristics [25]. However, more efficient, non-toxic, 

and environmentally friendly phyto-molecules can be extracted from different plant parts 

(e.g., leaves, barks, stems, roots) and utilized to create plant extracts for corrosion inhibition 

of metals in corrosive electrolytes [26, 27]. Phyto-molecules having aromatic rings, 

unsaturated π-systems, and heteroatoms in plant-based extract play a pivotal part in 

preventing the deterioration of steel rebar embedded in a concrete composite [28, 29]. 

In recent years, several research groups such as Bhattarai et al. [13], Somai et al. [22], 

Ahmed and Ganesh [30], Ghoreishiamiri et al. [31], and Valdez-Salas et al. [32] have 

focused on using plant-based phytochemicals as green additives in reinforcement concrete 

to control their early corrosion damage. These green concrete additives proved to be effective 

in controlling reinforcement concrete corrosion to a reasonable extent [30]. Conducting anti-

corrosion tests on the reinforcement steel rod in concrete composites or in simulated concrete 

pore solution with plant-based extracts provides some insight into the binding strength of the 

green inhibitors. More research reports presumed that the plant-based green corrosion 
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inhibitor shows better adhesion to corroding metal ions in aqueous electrolytes, including in 

concrete and simulated concrete pore solutions [33]. Besides, a significant research focus on 

the use of leaf extracts from Fatsia japonica [34], Urtica dioica [35], and Platanus acerifolia 

[36] plants to inhibit the corrosion of steel in chloride-contaminated concrete. Therefore, the 

current study aimed to assess the effectiveness of leaf extracts from the endemic species 

Ziziphus budhensis (LEZB) and Tagetes erecta (LETE) as environmentally friendly 

corrosion inhibitors in simulated concrete pore solution (SCP). 

In a prior investigation, the Tagetes erecta plant was employed in phytoremediation 

technology to eliminate toxic Zn, Cd metals [37], and styrene [38] from contaminated soils. 

The flower extract of the plant has demonstrated efficacy as a corrosion inhibitor in marine 

environments [39] and under acidic conditions [40, 41]. On the contrary, its leaf extract, 

extracted from leaves, is not utilized as a corrosion inhibitor in concrete. On the other side, 

different concentrations of Ziziphus mauritiana fruit extract in HCl solution showed high 

anti-corrosive properties to control the corrosion of Al and Cu metals at room temperature 

from the weight loss method. The inhibition efficiency was increased with the concentration 

of the inhibitor, reaching a maximum of 76.8% for Al and 88.58% for Cu at a concentration 

of 1.288 g/L Z. mauritiana fruit extract following the Langmuir’s adsorption isotherm for 

both metals [42]. However, among the seven species reported in Nepal, the Ziziphus 

budhensis, a newly identified species within the Rhamnaceae family, has been exclusively 

documented in Nepal [43]. To the best of the author’s knowledge, the potential anti-corrosive 

properties of Ziziphus budhensis and Tagetes erecta leaf extracts in reinforced concrete 

structures have been obscure previously, signifying the novelty of this study. 

In this context, the present study intends to investigate the efficacy of leaf extracts 

derived from Ziziphus budhensis (LEZB) and Tagetes erecta (LETE) plants as 

environmentally benign corrosion inhibitors in a saturated Ca(OH)2 solution, presumed as 

simulated concrete pore (SCP) solution having pH around 11.5. The primary objective is to 

assess the feasibility of LEZB and LETE as eco-friendly corrosion inhibitors in SCP 

solutions. In this regard, the study aims to evaluate the effectiveness of both the plant-based 

inhibitors in protecting MiSR in the SCP solution through gravimetric and electrochemical 

tests. The findings can offer valuable insights for implementing such inhibitors in concrete. 

2. Materials and Methods 

The leaves of the Ziziphus budhensis [Figure 1a], and Tagetes erecta plants [Figure 1b] were 

collected and authenticated at the National Herbarium and Plant Laboratory of the Plant 

Department in Godavari, Lalitpur. Subsequently, the leaves were separately dried, 

pulverized to make powder form, and soaked in methanol at a 1:2 ratio for two weeks with 

regular stirring, as illustrated in Figure 1c. Then, the supernatant was filtered and evaporated 

using a rotary evaporator [Figure 1d], as described elsewhere [44], to obtain a semi-solid 

form of both plant extracts separately. The semi-solid extracts of Ziziphus budhensis and 

Tagetes erecta, abbreviated as LEZB and LETE, respectively, were stored at 4°C. 
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The LEZB or LETE was added into a saturated Ca(OH)2 solution to prepare a distinct 

series of SCP solutions, each with a pH level of approximately 11.5. There are no significant 

changes in the initial pH of the SCP solution with the addition of the required amounts of 

each plant extract. However, the pH values of the test solutions decrease slightly between 

10.5 and 11.0. Hence, the SCP solution changes regularly by replacing the fresh solution 

during the corrosion test until 2802 h to maintain the approximate 11.5 pH. It is meaningful 

to mention the gravimetric tests and electrochemical measurements carried out in triplicate. 

 
Figure 1. Photographs showing leaves of (a) Ziziphus budhensis and (b) Tagetes erecta plant, 

(c) soaking of pulverized leaf powder, and (d) rotary evaporator for removal of solvent. 

Twenty-seven rust-free and corrugated 500 XD mild steel rods (MiSRs), each with an 

average diameter of 113 mm, were prepared for gravimetric analysis, as discussed elsewhere 

[45]. The weight % composition of the elements constituted in the MiSR is 0.17–0.23% C, 

0.70–0.90% Mn, and 0.035% P with about 98% Fe [46]. The initial weights of these 

specimens were recorded meticulously using a 5-digit micro-balance with an accuracy of 

0.00001 grams. Among 27 MiRS samples, three were submerged individually in three 

100 mL beakers, each containing 50 mL of SCP solution without LEZB or LETE, which 

served as the control SCP solution. The remaining 24 samples were dipped individually in 

three 100 mL beakers, each containing 50 mL of SCP solution with 500, 1000, 2000, and 

4000 ppm LEZB and LETE for about four months (i.e., 2802 h). The steel rod pieces were 

subjected to regular weight measurements using a digital micro-balance at 7, 14, 28, 43, 60, 

90 and 118 days while exposed to each SCP solution. Before estimating the weight loss of 

the corroded sample specimens, the corroded surface is gently brushed with a fine brush and 

washed with distilled water to remove the corrosion products. This process helps to calculate 

the corrosion rate more accurately. This procedure is carried out for all sample specimens. 

Subsequently, the corrosion rate (CoR) of MiSR specimens in control SCP solution 

(CoRcontrol) or in SCP solution with LEZB or LETE (CoRinhibit) and the corrosion inhibition 

efficiency (CoIE) calculated [47], using the formula given in Equations 1 and 3, respectively. 

 
Control/Inhibitor 2 2

(g) 87600
(mm/y)

(cm ) ρ(g/cm ) (hr)

w
CoR

A t

 


 
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where Δw = weight lost after immersion for t hours, A = area of the MiSR specimen 

calculated using the 2πr·(r+l) formula, ρ = density of MiSR (7.86 g/cm³), and θ = surface 

coverage. The surface coverage (θ) calculation depends on the assumption that the LEZB 

and LETE extracts, used as corrosion inhibitors, prevent iron dissolution entirely in the SCP 

solution [48]. 

Similarly, the electrochemical analysis was accomplished through a potentiodynamic 

polarization (PDP) study, as explained elsewhere [49]. The PDP studies were performed in 

the potential range of −750 to 1 mV with a scan rate of 20 mV/min. The PDP measurements 

were conducted three times using three sample specimens for each set of test solutions after 

immersion of the specimen for 1 hour to record the corrosion potential. The resultant PDP 

curves exhibited consistent characteristics with nearly identical corrosion potentials. In the 

aftermath of PDP, the corrosion current density, icorr (A/cm2), corrosion potential, CoP (mV 

vs. SCE), anodic slope, βa (mV/dec), and cathodic slope, βc (mV/dec) determined from the 

anodic and cathodic Tafel plots, as briefed elsewhere [50]. The linear Tafel plots 

extrapolated within the ±50 mV to calculate the CoR based on the icorr (CoRicorr) and the CoIE 

based on the icorr (CoIEicorr), following Equations 4 and 5, respectively [51, 52]. Furthermore, 

thermodynamic parameters, determined from the linear fit plots of the Langmuir adsorption 

model [53], are presented in Equation 7. 

The linear Tafel plots extrapolated within the 50 mV range from the CoP: 

 corricorr
0.13

ρ

E
CoR i    (4) 
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i i
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LEZB LETE LEZB LETE

LEZB LETE
icorr ads

1
 or 

θ θ

C C
C

K
   (7) 

where E = equivalent weight (55.85), CLEZB/LETE = concentration of LEZB or LETE extract, 

θicorr = surface coverage calculated based on the icorr, Kads = adsorption equilibrium constant. 

The free energy change o
ads)( G  can be calculated from Kads using the formula 

o
ads

G  = −2.303RT·log(55.55·Kads).  



 Int. J. Corros. Scale Inhib., 2024, 13, no. 4, 2087–2111 2092 

  

 

Besides the Langmuir adsorption model (LAM), the inhibiting action of phyto-

molecules of both plant extracts is elucidated using the Temkin adsorption model (TAM) 

[54], as depicted in Equation 8. Within Equation 8, the Temkin equilibrium constant (KETem) 

and constant BTem (RT/ΔHads) offer insights into the binding energy and change of heat 

(ΔHads) [33], respectively, as in Equation 9. Also, a linear relationship, consistent with the 

TAM, is observed when plotting θ against log[CLEZB] or log[CLETE] [55]. 

 Tem Tem Tem LEZB LETEθ log log  or B KE B C C   
     (8) 

  Tem LEZB LETE0
ads

θ log log
RT

KE C
H

 


 (9) 

The functional groups of LEZB and LETE were confirmed from FT-IR spectra (IR 

Affinity-1S, Shimadzu Corp., Japan). Phytochemical tests on LEZB and LETE were 

conducted to confirm which secondary metabolites were present (+) or absent (−). Besides, 

the morphological and compositional changes on the MiSR surface, after immersion for 

2802 h in SCP without and with 2000 ppm of LEZB or LETE, were analyzed using a 

scanning electron microscope (Thermo Fisher Scios Field Emission-USA, 10 KV) in 

connection with an energy dispersive X-ray spectroscope (EDAX Octane Elect EDS/EDX 

detector-USA, 30 KV). Also, the MiSR sample specimens were analyzed to capture 3D 

surface images and roughness using a white light interferometer (NewView-9000, Zygo 

Corporation). 

3. Results and Discussion 

Primary screening tests confirmed the presence (+) or absence (−) of different secondary 

metabolites on LEZB and LETE extracts from corresponding testing methods, as described 

elsewhere [55]. The secondary metabolites of LEZB and LETE are heteroatoms, unsaturated 

π-electrons, or aromatic rings containing secondary phyto-molecules (alkaloids, flavonoids, 

glycosides, phenols, tannins, and terpenoids). The results obtained from the chemical 

screening tests for LEZB [56, 57] and LETE [58, 59] are consistent with the findings 

documented in the existing literature. These phyto-molecules of LETE and leaf extract of 

Ziziphus species can form a diffusion barrier passive layer on the reinforcing steel (rebar) 

surface through adsorption. It protects the rebar corrosion and is consistent with previous 

literature [60]. 

The FTIR spectra shown in Figure 2a and 2b indicate the identification of functional 

groups in LEZB and LETE, respectively. These are characterized by the FTIR peak values, 

at approximately 3363–3340 cm−1 for O–H stretching vibration in aromatic compounds [40], 

1730–1715 for C–H or C=O stretching vibration [61], 1605 cm−1 for aromatic C=C 

stretching [62], 1457–1450 cm−1 for C–H stretching [63], 1256 cm−1 for C–O stretching and 

C–H stretching at 1038–1026 cm−1 for O–H or C–H bending of aromatics [64]. 
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Figure 2. FTIR spectra of (a) LEZB and (b) LETE. 

Based on the estimated corrosion rate of MiSR, the inhibition efficiency was studied 

using two methods. The first method is gravimetric (weight loss), and the second is 

electrochemical polarization. The gravimetric method is convenient for examining 

adsorption mechanisms, whereas the potentiodynamic polarization provides the corrosion 

inhibition kinetics of MiSR specimens in the SCP solution. The corrosion rates from the 

gravimetric analysis shown for the MiSR immersed in SCPs without (i.e., control specimen) 

and with 500–4000 ppm LEZB and LETE, as illustrated in Figures 3a and 3b, respectively, 

as a function of immersion time. These figures demonstrate that the corrosion rate of MiSR 

decreases with the addition of LEZB or LETE concentrations from 500 to 4000 ppm in SCP 

solution, compared to SCP without inhibitors. Explicitly, the corrosion inhibition effect of 

the LEZB in the SCP solution is remarkably higher than the LETE, indicating more effective 

corrosion prevention for the MiSR, with increasing concentrations of LEZB in the SCP, as 

illustrated in Figure 3a. 

 
Figure 3. Variation of corrosion rate of MiSR in SCP solution without and with different 

concentrations of (a) LEZB and (b) LETE. 
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Furthermore, Figures 4b and 4b show the changes in the corrosion inhibition 

efficiencies (CoIE) of both LEZB and LETE extracts on the MiSR in SCP solution. In the 

addition of 500–1000 ppm of both the plant extracts in SCP, the CoIE increased at a steep 

angle, and it increases moderately with further increase in the extract concentrations, 

showing maximum CoIE at 4000 ppm LEZB or LETE in SCP solution for MiSR. The 

highest corrosion inhibition efficiency (CoIE), reaching 91.22%, was observed after 

immersing the MiSR for 2802 hours in a solution containing 4000 ppm of LEZB. 

A similar trend was observed in the corrosion resistance performance of SCP solution 

with 4000 ppm of LETE, reaching a maximum of 67.81% CoIE. A previous study reported 

that the adsorption of Ca(OH)2 increases donor density and vacancy flux, reduces the defects 

diffusion coefficient, and accelerates the oxidation of Fe(II) to Fe(III) [65]. It aids in forming 

a new passive film with improved resistance to corrosion. We anticipate that the presence of 

plant-based extracts significantly influences the nucleation and growth of the passive film 

formation when Ca(OH)2 is involved. 

 

Figure 4. Variation of corrosion inhibition efficiency of MiSR in SCP solution with  

500–4000 ppm of (a) LEZB and (b) LETE at different immersion times. 

The leaf-derived extracts of LEZB and LETE, as reported from the chemical screening 

tests, consist of a diverse array of secondary phyto-molecules, including alkaloids, 

flavonoids, glycosides, phenols, and terpenoids. These secondary phyto-molecules, 

comprised of heteroatoms and π-electrons ring compounds, are postulated to act as focal 

points for interaction with the corroded surfaces of MiSR in a SCP solution with a strongly 

alkaline Ca(OH)2 electrolyte [27]. Another study indicated an 89% inhibition efficiency when 

a 3.5% NaCl-saturated Ca(OH)2 solution was blended with a 4% organic inhibitor [23]. The 

study confirmed the protective effects for steel by detecting an organic film comprising 

aromatic groups of the blended-organic inhibitor on the surface of the carbon steel. 

Therefore, the corrosion-controlling process of the mild steel in SCP solution with 

plant-based inhibitors involved the development of a protective passive film on the steel 

surface [66]. This corrosion-protecting passive film formation is also due to the adsorptive 
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interaction of phyto-molecules of the plant extract with the steel surface [67]. The LEZB and 

LETE extracts inhibit corrosion by adsorbing on the corroded MiSR surface, following LAM 

and TAM. It is essential to recognize that the mechanism is intricate, considering corrosion 

inhibition by adsorption of phyto-molecules. The multifaceted chemical interactions, 

encompassing electronic, structural, and steric effects, can potentially arise between the 

phyto-molecules of the extract and the corroded surface [68]. 

The LAM and TAM are fundamental adsorption models that elucidate the molecular 

interaction between inhibitor phyto-molecules and corroded MiSR surfaces. These models 

operate on the premise of uniformity across adsorption sites and assert that particle binding 

is independent of the occupancy status of neighboring sites [69]. In particular, the LAM 

describes the corrosion inhibition mechanism due to its ease of application and provision of 

sufficient information [70]. It represents a fundamental model for elucidating the interaction 

between inhibitor secondary phyto-molecules of the plant extracts (e.g., LEZB or LETE) 

and the corroded-MiSR surface (i.e., Fe2+ ions). 

The LAM postulates that adsorption sites exhibit uniformity, with particle binding 

occurring independently, as described elsewhere [53, 71]. Figures 5a and 5b portray the 

correlation between CLEZB/θ and CLEZB or CLETE/θ and CLETE, respectively, for MiSR after 

different immersion hours in SCP solution under varying concentrations of LEZB and LETE. 

The findings reveal a consistent linear coefficient of determination (R2) close to unity (i.e., 

between 0.96 and 1.00) across all scenarios. The study evaluated the inhibitory mechanism 

of Ziziphus budhensis or Tagetes erecta onto MiSR in SCP solution at 25°C. 

 
Figure 5. Langmuir plots of MiSR in SCP solution with different concentrations of (a) LEZB 

and (b) LETE. 

To be specific, the TAM believes three assumptions: they are (i) linearly decreases the 

ΔHads with coverage rather than logarithmically, (ii) uniformly distributed surface binding 

energies enhance the adsorption process, and (iii) it accounts for the interaction between the 

adsorbate and the adsorbent [72, 73]. Upon analysis of data for testing the Temkin isotherm 
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model, the plots of θ versus log(CLEZB) or θ versus log(CLETE) yielded linear relationships, 

with corresponding R2 values falling within the range of 0.86 to 0.98 (i.e., lower than in 

Langmuir plots), as depicted in Figures 6a and 6b, respectively. These findings substantiate 

the validity of the Temkin adsorption isotherm in characterizing the adsorption mechanism 

of LEZB or LETE on MiSR surfaces, thereby exerting control over their corrosion in SCP 

solution at a temperature of 25±1°C. Additionally, the conformity to the Temkin adsorption 

isotherm suggests that the adsorption of the plant-based LEZB or LETE corrosion inhibitors 

likely occurs in a monolayer fashion on the uniformly corroded MiSR surface [74]. 

However, based on the estimated R2 values for the Langmuir and Temkin isotherms, it 

inferred that the adsorption behavior of LEZB and LETE on the corroded MiSR surface 

conforms most closely to the Langmuir isotherm. Besides, the molecular interaction 

parameter, influenced by the Temkin equilibrium constant, binding energy, and heat of 

adsorption as determined from the Temkin isotherm linear fit, has yielded a negative value, 

which signifies that the adsorbed phyto-molecules from both the LEZB and LETE extracts 

manifest a repulsive force toward the adsorbing species [75]. The observation aligns with 

the LAM. Repulsion between adsorbed molecules and adsorbing species primarily fosters 

monolayer formation of the extract on the MiSR surface. 

 
Figure 6. Temkin plots of MiSR in SCP solution with different concentrations of (a) LEZB 

and (b) LETE. 

Demonstrating the LAM as the best fit compared with the TAM, it suggests that the 

LEZB and LETE-based phyto-molecules adsorbed onto the corroded MiSR surface to form 

a uniform single-layered protective layer [76]. According to the LAM, there is minimal 

interaction (i.e., physical adsorption) between the inhibitor molecules and the metal surface 

[77]. The substantial adsorption of the LEZB and LETE-based inhibitors on the corroded 

MiSR surface is attributed to the presence of electron-donating atoms such as nitrogen (N), 

sulfur (S), and oxygen (O) within the phyto-molecular structures of the LEZB and LETE, as 

confirms from the screening test results above. These atoms of the phyto-molecules can form 

coordinate bonds with the corroded iron atom [78], thereby facilitating the formation of a 
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protective passive layer because these phyto-molecules of LEZB and LETE have high 

shielding effect and corrosion-inhibiting potential against material attack. The observation 

aligns with the findings of many researchers in their previous findings who documented 

similar adsorption behavior of plant extracts on metal corrosion in acidic environments 

[79, 80]. 

Besides, as described above in Equation 6, the corrosion inhibition efficiency (CoIE) 

of the LEZB and LETE can be approximated using the potentiodynamic polarization (PDP) 

measurements for studying the adsorption kinetics of LEZB or LETE-based phyto-

molecules on MiSR surface in the SCP solution. Figures 7a and 7b depict the PDP outcomes 

in the form of Tafel plots for MiSR in SCP solution without (control) and with different 

concentrations of LEZB and LETE inhibitors, respectively. The CoP values shifted in the 

negative direction between the inhibited and control conditions, indicating a blockage of the 

active cathode sites on the MiSR by the phyto-molecules. Previous works have reported that 

plant-based phytochemicals can classified as cathodic, anodic, or mixed-type corrosion 

inhibitors based merely on whether the CoP difference between the control and inhibited 

conditions is more than 85 mV or is not [81]. The observed CoP differences exceeding 

85 mV (SCE) in this study indicate that the LEZB or LETE inhibitor is cathodic-type, as 

reported by Sayed et al. in 2019 [82]. 

Following the Tafel extrapolation plots using the linear potential resistant (LPR) 

method, electrochemical kinetic factors - CoP, icorr, βa, and βc were determined from the PDP 

curves and summarized in Table 1. The icorr values in the test SCP solutions containing 

inhibitors consistently exhibit lower values compared to the control sample. It suggests the 

development of a protective layer on the MiSR surface, which effectively mitigates the 

dissolution of Fe3+ ions in the SCP solution. 

 
Figure 7. Potentiodynamic polarization curves for MiSR immersed in SCP without and with 

different concentrations of (a) LEZB and (b) LETE.  
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Table 1. Gravimetric and electrochemical parameters obtained from weight loss and LPR methods. 

 
Inhibitor, 

ppm 

ϕcorr, 

mV 

icorr, 

µA/cm2 

βa, 

mV/dec 

−βc, 

mV/dec 

icorr-

based 

CoR, 

mm/y 

icorr-

based 

CoIE, % 

Wt.-based 

CoR, 

mm/y 

Wt.-

based 

CoIE,

% 

Control – –428.4 7.301 2.54 6.33 6.75 – 0.03324 – 

LEZB 500 –529.5 3.111 10.33 19.86 2.87 56.74 0.01642 50.61 

 1000 –508.4 3.027 12.73 23.13 2.79 58.67 0.01131 65.98 

 2000 –514.3 1.925 11.46 25.66 1.78 73.63 0.00546 83.57 

 4000 –495.8 1.357 14.88 21.82 1.25 81.48 0.00292 91.22 

LETE 500 –673.6 3.606 08.86 15.15 3.33 50.67 0.02052 38.27 

 1000 –698.7 3.105 07.46 18.11 2.87 57.48 0.01816 45.37 

 2000 –646.9 3.039 12.09 14.61 2.81 58.37 0.01641 50.63 

 4000 –576.2 1.918 06.21 27.33 1.77 73.78 0.01070 67.81 

Furthermore, akin to the CoP values, the cathodic slope values did not exhibit a distinct 

regular trend of change with extract concentrations, suggesting that both extracts could 

impede corrosion through the adsorption process on the MiSR surface. The shift in CoP 

values of the MiSR in the SCP solution with plant extract concentrations, compared to the 

control SCP solution, indicates a blockage of active sites on the MiSR by phyto-molecules 

of LEZB and LETE extracts. 

The introduction of LEZB and LETE to the SCP solution caused a significant shift in 

the CoP values towards more negative values concerning the CoP of the MiSR in the control 

SCP solution, as illustrated in Figure 8. There is no discernible trend in the CoP and cathodic 

current density (ic) as the extract concentration increased, providing further evidence that 

both plant extracts functioned as mixed-type corrosion inhibitors even though the CoPs of 

the MiSR in all concentrations of LEZB or LETE located between the CoP in control and 

500 ppm LEZB or LETE extract. The findings demonstrate that the plant base LEZB and 

LETE inhibitors effectively mitigate the corrosion rate, operating as a cathodic-type inhibitor 

with predominant control over the cathodic reaction, as described in previous works [83]. 

The additions of either LEZB or LETE extract in the SCP solution enhance a decrease in the 

icorr value, suggesting the formation of a passive layer on the surface of the MiSR. The plant 

extracts addition enhances the potential for protecting corroded MiSR in SPC solution, as 

evidenced by the decreased corrosion rate (CoR) and increased inhibition efficiency 

(CoIE%) values. The highest inhibition efficiency (i.e., 81.48%) in SCP solution with 

4000 ppm LEZB compared with other concentrations of both extracts. These findings from 

electrochemical tests align closely with those obtained from gravimetric tests, indicating that 

the 4000 ppm of LEZB extract could be an effective corrosion inhibitor for concrete 

additives. 
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Figure 8. Potentiodynamic polarization curves for MiSR immersed in SCP with (a) 500 ppm, 

(b) 1000 ppm, (c) 2000 ppm and (d) 4000 ppm LEZB and LETE including blank (control). 

SEM technique was employed to analyze the changes in the surface morphology of 

MiSR before and after immersion for 2802 h in SCP solutions without (control) and without 

2000 ppm LEZB or LETE extract inhibitor. In the control SCP solution without the extract 

inhibitors, the MiSR surface severely corroded and the surface covered by thick corrosion 

products, hence causing significant damages, as illustrated in the SEM image in Figure 9. 

The corroded layer looked rough and porous with cracks, allowing aggressive ions to 

penetrate deeply into the MiSR surface, and hence showed a significantly high corrosion rate 

of the MiSR after immersion for 2802 h in control SCP solution, as noticed in Figures 3a 

and 3b. 
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Figure 9. SEM image of the surface layer formed on MiSR after dipping it for 2802 h in the 

control SCP solution without extract. 

In contrast, after 2802 h of immersion in SCP with 4000 ppm LEZB and LETE, the 

MiSR surface showed minimal damage and a relatively even surface, as demonstrated in 

Figure 10a and 10b, respectively. Both SEM images confirm that very few corrosion 

products formed with smooth morphologies, suggesting the anti-corrosion activities of 

LEZB and LETE in the SCP solution. The protective layer formed on the surface of MiSR 

in the SCP solution with LEZB and LETE extracts acts as a shielding agent to protect the 

MiSR from aggressive environments, as described elsewhere [84]. Moreover, SEM images 

illustrate a micro-image of the MiSR surface obtained from the control SCP solution, 

revealing multiple oxide films that point to a high rate of iron oxidation in the SCP solution. 

This finding aligns with the low weight percentage (wt.%) of iron and high oxygen content 

identified through energy dispersive X-ray spectroscopy (EDS) analysis. Conversely, the 

MiSR retrieved from the inhibited SCP solution containing 4000 ppm LEZB and 4000 ppm 

LETE exhibits smooth surfaces devoid of pits and cracks, as depicted in Figures 10a and 

10b, respectively. 

Based on the EDS analysis results, the exposed MiSR sample for 2802 h in the control 

SCP solution exhibited an elemental Fe content of 55.47% with a high oxygen concentration 

of 31.53%, which indicates a notable corrosion reaction on the MiSR surface in the control 

SCP solution (Figure 9). Conversely, minimal corrosion was observed on the MiSR surface 

when immersed in the SCP solution containing 4000 ppm LEZB [Figure 10a] and 400 ppm 

LETE extract [Figure 10b], resulting in 69.76% and 68.10% iron and oxygen concentrations 

of 23.21% and 24.01%, respectively, as tabulated in Table 2. The results summarized in 

Table 2 suggest effective inhibition of iron dissolution from the MiSR in SCP solution with 

varying concentrations of LEZB and LETE additions. Consequently, it said that the low 

oxygen with high iron content indicates the MiSR surface is less corroded with 

comparatively low amounts of rust, thereby minimizing iron loss in SCP solution with 
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4000 ppm LEZB or LETE from the EDS analysis. Similar properties have been documented 

in prior research [85, 86]. 

     
(a)                                                                          (b) 

Figure 10. SEM images of MiSR layer formed after 2802 h immersion in SCP with 4000 ppm 

of (a) LEZB and (b) LETE. 

Table 2. EDS analysis of the MiSR surface after 2802 hours immersion in control SCP solution and SCP 

with 4000 ppm LEZB and LETE including the composition of a fresh MiSR surface. 

Elements 

Composition (wt.%) of immersed-MiSR for 2802 h in SCP solution 
Fresh MiSR 

(wt.%) 
at control condition 

with 4000 ppm of 

LEZB 

with 4000 ppm 

LETE 

O K 31.53 23.21 24.01 − 

Fe K 55.47 69.76 68.10 98.27–98.35 

Al K − 01.52 − − 

Ca K 07.09 03.01 03.45 − 

Si K 03.01 02.41 01.50 0.40 

Na K 02.90 − 02.94 − 

C − − − 0.17–0.25 

Misc. − − − 1.08 

In addition to conducting SEM/EDS analysis, we employed the three-dimensional (3D) 

topography technique of white light interferometry (WLI) to examine the 3D white-light 

interference images of the tested specimens. White light interferometry (WLI) gives fast, 

accurate, non-contact surface topography in three dimensions (3Ds). It is an advanced, non-

destructive optical surface profiling technique that provides exceptional lateral and vertical 

resolution for precise materials characterization [87]. The white-light interferometers 
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(WLIs) have garnered considerable attention from researchers over the past few decades due 

to their exceptional precision, 3D surface mapping capabilities, color display functionality, 

aptitude for measuring surface roughness, and microscale components, and so on [88]. It 

could successfully resolve the surface profile of test structures even for a smooth surface 

with a roughness of a few angstroms [89]. The method is one of the widely used corrosion 

studies [90, 91], and its sensitivity is sufficient for studying rebar concrete corrosion [92]. 

These advantages of the WLI are also exploited in the present study to examine the 3D 

white-light interference images of the tested MiSR specimens. These specimens underwent 

preparation for WLI analysis after immersion for 2802 h in control SCP solution and SCP 

solutions with 2000 ppm LEZB and LETE. Figures 11–13 yield valuable insights into these 

MiSR specimens’ 3D topographical surface characteristics. Upon immersion in the control 

SCP solution, the MiSR exhibited a surface roughness (SR) of 8.501 µm, attributed to 

significant corrosion (Figure 11). Notably, the SR values for MiSR specimens immersed in 

SCP solutions containing 2000 ppm LEZB (Figure 12) and LETE (Figure 13) for 2802 h are 

3.904 µm and 5.727 µm, respectively. These measurements represent a 54.08% and 32.63% 

reduction in SR relative to the control SCP solution. The LEZB and LETE demonstrate 

superior inhibitive characteristics and show consistency with the corrosion morphology 

analysis from SEM/EDS techniques. 

  
Figure 11. 2D (upper) and 3D (lower) topographical WLI images of MiSR surface formed 

after immersion for 2802 h in control SCP solution. 
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Figure 12. 2D (upper) and 3D (lower) topographical WLI image of MiSR surface formed 

after immersion for 2802 h in SCP solution with 2000 ppm LEZB. 

  
Figure 13. 2D (upper) and 3D (lower) topographical WLI image of MiSR surface formed 

after immersion for 2802 h in SCP solution with 2000 ppm LETE. 

3. Conclusions 

Based on the gravimetric weight loss, electrochemical, and surface analysis tests, as the 

knowledge of the authors, for the first time, this study shows that plant extracts (LEZB and 

LETE) effectively inhibit corrosion of the mild steel rod (MiSR) exposed to simulated 

concrete pore (SCP) solution. The extracts create protective surface layers, reducing the 

corrosion rate of the MiSR. The inhibition efficiencies reached optimal of 91.22% and 

81.48% when utilizing 4000 ppm of LEZB and 73.78% and 67.81% with 4000 ppm LETE 

in the concrete pore solution at ambient temperature. These values were determined using 

weight loss and potentiodynamic polarization (PDP) analysis techniques. The PDP 
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measurements confirmed that the LEZB and LETE act as cathodic-type inhibitors with 

predominant control by the cathodic reaction. The extract-based phyto-molecules adsorbed 

onto the corroded MiSR surface to form a uniform single-layered protective layer according 

to the Langmuir and Temkin adsorption isotherm models. Surface analysis using SEM/EDS 

and WLI showed that the MiSR surface after being immersed in SCP with plant extracts is 

smooth, compared to the MiSR sample immersed in the control SCP solution without 

LEZB/LETE. Additionally, EDX analysis confirmed that LEZB and LETE additions in the 

SCP solution protected the MiSR. This finding motivates researchers to investigate the anti-

corrosive characteristics of novel plant-based extracts as additives in concrete. 
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