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Abstract  

Metal complexes are frequently employed in industry as key compounds in medicinal 

chemistry. The interaction between metal complexes and metal surfaces is crucial in corrosion 

chemistry. Open circuit potential-time measurements, electrochemical impedance spectroscopy 

(EIS), and potentiodynamic polarization techniques are used to investigate the effects of two 

manganese metal complexes, Mn2(PAB)4(Phen)2 and Mn2(PAB)3(Phen)2(OH) abbreviated as 

MnP4 and MnP3OH, on the corrosion of mild steel in sulfuric acid solutions. The chemical and 

structural characteristics of the complexes are confirmed using powder X-ray diffraction, 

thermal gravimetric analysis and FTIR. Both complexes act as potential corrosion inhibitors, 

with inhibition efficiencies of 90% at 10–3 mol·L–1. Potentiodynamic polarization curves 

suggest that MnP4 and MnP3OH are anodic type inhibitors. The impedance responses indicate 

that the corrosion process of mild steel is activation controlled. The obtained results revealed 

that the inhibition efficiency decreases with increasing temperature, which is suggestive of 

physical adsorption mechanism. The corrosion inhibition mechanism was further corroborated 

by the values of kinetic and thermodynamic parameters obtained from the experimental data. 
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1. Introduction 

Despite the fact that mild steel has numerous technological applications, its poor corrosion 

resistance, particularly in acidic media used in pickling and cleaning, limits its use [1–11]. 

As a result, mild steel corrosion is a primary concern for corrosion scientists and material 

technologists. The most widely applied method for suppressing the corrosion rate of metals, 

particularly in acid solutions, is the use of inhibitors [12–18]. There are two major classes 

of inhibitors: inorganic and organic. The anodic type of inorganic inhibitors includes 
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chromates, nitrites, molybdates and phosphates, and the cathodic type includes zinc and 

polyphosphate inhibitors. The film forming class is the major class of organic inhibitor as it 

includes amines, amine salts and imidazolines – sodium benzoate mercaptans, esters, amines 

and ammonia derivatives [19]. Several organic molecules with nitrogen, oxygen, sulfur, 

phosphorus, and aromatic rings have the ability to adsorb to metal surfaces and act as 

inhibitors [8, 20–23]. Metal complexes are increasingly receiving a lot of attention from 

scientists, especially in the fields of chemistry and material science [24]. Owing to their 

unique properties, they are widely used as catalysts for chemical reactions in pharmaceutical 

industry, stabilizers or precursors in sol-gel processes as well as corrosion inhibitors [25]. 

Metal complexes or metal organic frameworks (MOFs) are considered as a group of 

compounds, either metal ions or clusters, harmonized with organic ligands to form one or 

higher dimensional structures. Thus, metal complexes are formed by coupling transition 

metals with organic ligands to form an organometallic complex [26]. The substitution of the 

ligand molecule and changes in the existing chemical structures lead to the synthesis of a 

wide range of transition metal complexes, some of which have proven to be effecient 

corrosion inhibitors. According to Mahdavian and Attar [27], the interaction of transition 

metal complexes with mild steel or any metallic surface is greatly affected by the activity 

and nature of the ligand and the standard electrode potential of the metal cation. It is reported 

that the presence of aromatic rings and heteroatom-rich ligand are likely to enhance the 

adsorption of the inhibitors on the metal’s surface promoting effective corrosion inhibition 

[28–30]. Adam et al. [31] declared higher corrosion inhibition efficiency for the Cu(II) 

complex compared with the Co(II) complex containing the same ligand. Therefore, 

reasonably regulating the metal ions coordination center and the ligand is key to developing 

metal complexes that are good corrosion inhibitors. 

Several studies have been conducted on the use of metal complexes in the field of 

corrosion inhibitors chemistry. In different acidic media at room and elevated temperatures, 

various ligands of the metal complexes Co(II), Ni(II), Zn(II), Cu(II), Mn(II), Cr(II) and 

Sn(II) have shown good corrosion inhibition properties for mild steel [27, 32–34]. Transition 

metal complexes derived from Schiff's base are more effective inhibitors due to their greater 

size and compactness, while metal-organic blends have also shown synergistic effects [35–

39]. 

There has been an emerging demand for transition metal complexes in rendering the 

corrosion rate of metals in a variety of aggressive environments. Singh and co-workers [29] 

synthesized and tested the efficiency of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes 

with 2-aminobenzoic acid (phenyl-pyridin-2-yl-methylene)-hydrazide. The obtained results 

showed appreciable corrosion inhibition efficiency for mild steel in 1 M HCl solution and 

the metal complexes showed a better inhibition effect than the corresponding ligand. Devika 

et al. [16] reported the corrosion behavior of three metal [Co(II), Ni(II), and Fe(III)] 

complexes of antipyrine based azo dye ligand for soft-cast steel in 1 M HCl acid solution 

using experimental and theoretical methods. The study revealed that the ligand and their 

metal complexes show good inhibition efficiency, with Ni complex showing significant 
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inhibition efficiency at an optimum concentration of 25 mg/L. Heteroleptic complexes of 

four divalent metals, Co, Ni, Zn, and Cd with dithiophosphonates and N-donor ligands were 

successfully synthesized, characterized and tested for the corrosion inhibition of mild steel 

in 1 M HCl solutions [30]. The paper reported excellent corrosion inhibition potentials of 

the metal complexes with inhibition efficiencies of 75.20% (Co), 89.41% (Zn), 90.60% (Cd) 

and 91.78% (Ni) when applied at 100 ppm to mild steel in 1 M HCl. Similar results were 

reported by Nassar et al. [40]. In a new study, Haruna et al. [41] evaluated the inhibition 

efficiency of newly synthesized Schiff‘s base derived from the reaction of 2-amino phenol 

and 2-hydroxy-1-naphthaldehyde and its Co(II) and Mn(II) complexes on the corrosion of 

copper in 1 M HCl solution using the weight loss method. The results showed that inhibition 

efficiency increased with increasing inhibitors concentration. The negative values of Gibb’s 

free energy of adsorption (ΔGads) confirmed the physical adsorption of the inhibition process 

which is inconsistent with Langmuir adsorption isotherm. In the same concept, recently, Liu 

et al. [28] tested the inhibitive properties of 2,2′-bipyridine-3,3′-dicarboxylic acid (bpda) and 

its transition metal complexes including Ni(bpda)2, Zn(bpda)2 and Mn(bpda)2, on the 

corrosion inhibition of carbon steel in 0.5 M HCl. The results revealed that the metal 

complexes exhibit higher inhibition efficiencies compared to the bpda ligand, among which 

Ni(bpda)2 is the most effective for inhibiting corrosion. Accordingly, the superior corrosion 

inhibition performance of the three complexes could be attributed to their good adsorption 

abilities. Ade et al. [42], Kashyap et al. [43] Verma et al. [44] and Abdel-Gaber et al. [45] 

proved that transition metal complexes of the Schiff ’s base are capable of retarding the 

corrosion rate of mild steel in acidic conditions. 

Gupta et al. [46] indicated that the ligand and its metal complexes had a significant 

inhibitory effect on the corrosion of mild steel in 0.5 M H2SO4 solution, and the Mn(II), 

Co(II) and Cu(II) complexes showed better inhibition than the ligand. Additionally, El 

Tabesh et al. [47, 48] showed that mixed ligand copper and manganese complexes have a 

remarkable effect on the corrosion inhibition of carbon steel in 0.5 M H2SO4 solutions. 

Baboukani et al. [49] found that Co complex with a Schiff‘s base ligand is a moderate mixed 

type (with predominant anodic character) inhibitor for the corrosion of 316 L stainless steel 

(SS) in 0.1 H2SO4 solution. Electrochemical tests revealed that increasing the concentration 

of Co complex increases the corresponding inhibition efficiency upto a concentration of 

100 ppm.  

Moreover, in an attempt to search for high performance, effective and ecofriendly 

corrosion inhibitors in neutral media, the macrocyclic compartmental ligand: (2E)-3,6,10,13-

tetramethyl-2,7,9,14-tetraaza-1,8(1,4)dibenzenacyclotetradecaphane-2,6,9,13-tetraene 

(PDHDH) and its Ni(II), Cu(II) complexes proved to be excellent inhibitors for on the 

corrosion of Cu10Ni alloy in 3.5% NaCl. Their protection capacity reached upto 95.7% at 

100 μM additive concentration [50]. Additionally, in oilfield, the anticorrosion properties of 

N′-phenylbenzohydrazide and its metal complex derivatives (Cu, Mn, Co) on the corrosion 

of mild steel in oilfield produced water were reported by Mahross et al. [51]. The obtained 

data proved that metal complexes acted as anodic-type inhibitor. Their inhibition activity 
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was attributed to their physical and chemical adsorption on the mild steel surface resulting 

in an effective protective barrier. Quantum chemical calculations confirmed experimental 

data and showed that NPB–Cu has the lowest EGap value (1.053 eV) indicating that it could 

have better performance as corrosion inhibitor.  

In light of the above few reports on the corrosion inhibition properties of transition 

metal complexes, the present work looks into the influence of two manganese metal 

complexes on the corrosion of mild steel in a 0.5 M sulfuric acid solution. The challenge of 

this study is the preparation and functionalization of novel Mn complexes from simple 

ligands by a simple method achieving high inhibition efficiencies (90–93%) as well as 

proposing an inhibition mechanism of metal complexes for the corrosion of mild steel in an 

acidic environment. 

2. Experimental Techniques 

2.1. Solution Preparation 

Distilled water was used to dilute 0.5 M sulfuric acid (H2SO4) solutions from 80% analytical 

grade (Scharlau chemical industries) concentrated acid. As previously stated, the tested 

solutions were prepared using pure ethanol (99.8%, Riedel-de Haen) and distilled water 

[47, 48]. MnP4 was prepared by the reaction of an equimolar amount of each of p-

aminobenzoic acid, phenanthroline and MnSO4·H2O in methanol at 50°C. However, 

MnP3OH was synthesized by the reaction of equimolar of each of p-aminobenzoic acid, 

phenanthroline and Mn(NO3)2·H2O in methanol at room temperature.  

Powder X-Ray Diffraction (XRD BRUKER D8 Advance X-Ray Diffractometer) 

employing copper Kα radiation, thermal gravimetric analysis (TGA Labsys SETERAM 

computerized thermal analyzer) were used to confirm the chemical and structural properties 

of complexes. Figure 1 (a and b) shows the structural formula of the manganese complexes 

MnP4 and MnP3OH. 

   

 (a) (b) 

Figure 1. Structural formula of the used Mn-metal complexes MnP4 (a) and MnP3OH (b). 
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Nicolet-Avatar 370 FTIR analysis was used to characterize the Mn complexes. The FTIR 

spectra for MnP4 and MnP3OH complexes are shown in Figure 2 (a and b). The spectra of 

the phenanthroline complex in both figures are characterized by strong bands observed in 

three frequency areas, specifically between 700 and 900 cm–1, between 1125 and 1250 cm–1, 

and between 1400 and 1650 cm–1 [52]. The coordination of deprotonated p-aminobenzoic 

acid to manganese was observed at 1581 cm−1 and 1396 cm−1, which are assigned to the 

asymmetrical and symmetrical COO vibrational modes, respectively [53]. Peaks in the range 

of 450–630 cm-1 may be assigned to Mn–O stretching vibration band present in both MnP4 

and MnP3OH complexes [54]. 

   
 (a) (b) 

Figure 2. FTIR spectra of Mn-metal complexes MnP4 (a) and MnP3OH (b). 

2.2. Electrochemical Studies  

Electrochemical studies (electrochemical impedance spectroscopy (EIS) and polarization 

measurement) were performed by connecting the Gill AC transfer function analyzer ACM 

instrument (UK) to a three-electrode electrochemical cell setup. A detailed description of the 

electrochemical techniques used in these experiments was previously discussed [7, 48]. 

3. Results and Discussions  

 3.1. Open Circuit Potential (OCP) measurements  

Figure 3 shows that mild steel acquires its equilibrium potential after 15 minutes of 

immersion in 0.5 M H2SO4 solutions. In the presence of 10–4 mol·L–1 MnP4 and MnP3OH, 

the equilibrium potential shifted towards less negative values, indicating their effect on the 

anodic dissolution of mild steel in sulfuric acid solutions [5, 55]. 
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Figure 3. Variation of open circuit potential as a function of time for mild steel in 0.5 M 

H2SO4 solution in the absence and presence of 10–4 mol·L–1 MnP4 and MnP3OH complexes at 

30°C. 

3.2 Potentiodynamic polarization curve measurements 

Figure 4 shows that the addition of MnP4 and MnP3OH complexes shifts the anodic branch 

of the polarization curves to a lower current density, indicating suppression of the anodic 

dissolution of steel and therefore classifying them as anodic type inhibitors. The 

electrochemical polarization parameters including the corrosion potential (Ecorr), corrosion 

current density (icorr), anodic and cathodic Tafel slopes (βa and βc) for mild steel in 0.5 M 

H2SO4 in the absence and presence of 10–4 mol·L–1 MnP4 and MnP3OH complexes at 30°C 

are listed in Table 1.  

 
Figure 4. Potentiodynamic polarization curves for mild steel in 0.5 M H2SO4 in the absence 

and presence of 10–4 mol·L–1 MnP4 and MnP3OH complexes at 30°C. 
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Table 1. The electrochemical polarization parameters for the corrosion of mild steel in in 0.5 M H2SO4 in 

the absence and presence of 10–4 mol·L–1 MnP4 and MnP3OH complexes at 30°C. 

Inhibitor 

(mol·L–1) 

Ecorr 

(mV vs. SCE) 

βa                        –βc icorr 

(mA·cm–2) 
mV/decade 

0.00 –532 99 147 1.694 

MnP4 –456 72 108 0.581 

MnP3OH –421 59 124 0.437 

Inspection of the tabulated data revealed that the corrosion current density (icorr) 

deacreases with the addition of both complexes. Moreover, the addition of MnP4 and 

MnP3OH shifts the corrosion potential 𝐸corr to more positive values. 

3.3 Electrochemical impedance spectroscopy results 

Based on Nyquist representations, Figure 5 displays two depressed capacitive 

semicircles. The first depressed capacitive loops were generated by dispersion effects due to 

surface roughness and inhomogeneities during corrosion [56, 57]. The second semicircle, on 

the other hand, indicates that mild steel dissolution happens under activation control and 

may possibly be due to the charge transfer reaction and the time constant of the electric 

double layer. In the presence of MnP4 and MnP3OH complexes, the depressed semicircle is 

followed by a low-frequency inductive loop. The inductive loop shows the presence of a 

Faradic process on free electrode sites, that may be credited to the relaxation of intermediates 

governing the anodic process on the electrode surface produced by adsorption species such 

as FeSO4 [58] or inhibitor species [59, 60]. It might also be explained by the re-dissolution 

of the passivated surface at low frequency [61]. The diameter of the produced capacitive 

semicircles increases as the concentration of both complexes rises [5, 11].  

 
Figure 5. Nyquist plots for mild steel in 0.5 M H2SO4 in the absence and presence of  

10-4 mol·L–1 MnP4 and MnP3OH complexes at 30°C. 
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The Bode plots (the impedance modulus |Z| and the phase angle theta) shown in 

Figure 6 indicate that the presence of both complexes increases the impedance modulus, 

indicating that they retard the corrosion rate of mild steel in sulfuric acid solution. In these 

plots, the phase angle values are less than 90 indicating the presence of non-ideal 

capacitances and confirming the presence of inhomogeneities in the system. Additionally, 

the phase angle value increases with the addition of both complexes. This might be owing 

to the reduction of the capacitive behavior at the mild steel surface as a result of its lower 

dissolution rate in the presence of both complexes [62]. 

 
Figure 6. Bode plots of mild steel in 0.5 M H2SO4 in the absence and presence of 10-4 mol·L–1 

MnP4 and MnP3OH complexes. 

The equivalent circuit, inserted in Figure 5, was used to analyze the obtained spectra 

for both complexes in sulfuric acid. The components of this circuit were extensively 

described in previous work [48]. The ideal double layer capacitance (Cdl) could be obtained 

from the non-ideal double layer capacitance Qdl using equation 1 [7]: 

 
1/

ct
dl

ct

( ) nQ R
C

R


=  (1) 

The percent inhibition efficiency (%P) was calculated using equation (2): 

 ct ct0

ct

( )
% 100

R R
P

R

−
=   (2) 

Rct0 and Rct are the charge transfer resistance (Ohm·cm2) values in the absence and in the 

presence of MnP4 and MnP3OH complexes, respectively. 

The electrochemical parameters with %P obtained from electrochemical chemical 

measurements are given in Table 2. As can be seen, the Rct and %P values increase while Cdl 

values decrease with increasing MnP4 and MnP3OH concentrations in sulfuric acid solutions. 

This drop in Cdl values is due to the adsorption of MnP4 and MnP3OH complexes on mild 

steel surfaces and the formation of a protective barrier that prevents metal diffusion into the 

bulk [48]. 
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Table 2. The electrochemical impedance parameters for the corrosion of mild steel in 0.5 M H2SO4 

containing different concentrations of MnP4 and MnP3OH complexes. 

 
Conc., 

mol·L–1 

Rs 

Ω·cm2 

Cf 

F/cm2 

Rf 

Ω·cm2 

Rct 

Ω·cm2 

Qdl 

F/cm2 
n 

Cdl 

F/cm2 

L 

H·cm2 

RL 

Ω·cm2 
%P 

M
n
P

4
  

Blank 1.54 1.56 2.30 9 6500 0.83 61563 – – – 

1×10–5 0.84 1.83 1.09 14.9 369 0.85 1687 0.00072 51 39.1 

2x10–5 0.75 2.06 1.56 15.2 344 0.85 1559 0.0154 156 40.8 

1×10–4 0.35 1.53 1.25 27.6 250 0.83 1528 44.42 197 67.5 

2x10–4 0.73 1.98 1.64 32.8 241 0.83 1514 50.48 200 72.6 

4x10–4 0.68 2.25 1.41 43.4 227 0.83 1492 60.49 210 79.2 

5x10–4 0.50 1.05 1.11 103 98 0.85 498 320 583 91.2 

1×10–3 0.50 0.98 1.19 137 82 0.87 331 322 1036 93.4 

M
n
P

3
O

H
 

1×10–5 0.54 2.00 1.54 18.5 2808 0.83 25956 0.00181 149 51.4 

5x10–5 0.56 1.65 1.57 22.4 2493 0.84 19994 0.00187 254 59.8 

1×10–4 0.12 1.68 1.58 40.3 1204 0.86 6974 0.0170 255 77.7 

3x10–4 0.53 1.85 1.52 59.5 1200 0.87 6375 0.0189 818 84.8 

5x10–4 0.54 1.72 1.55 100 1147 0.87 6540 0.0195 911 91.7 

1×10–3 0.55 1.64 1.62 151 1132 0.88 5853 226 913 94.0 

2x10–3 0.55 0.80 1.54 159 90 0.87 376 8556 1769 94.3 

Comparing the efficiency of the tested MnP4 and MnP3OH metal complexes to mixed 

Ligands Cu complexes reported previously [48], it could be observed that Cu complexes 

acted as mixed type inhibitors whereas Mn complexes were anodic type inhibitors. However, 

both Cu and Mn complexes were effective at reducing the corrosion of mild steel and have 

nearly the same efficiency of 90–94% for 1×10–3 M. As previously mentioned, hetero-atoms 

rich ligands as well as the metallic ion present in the complex alter the interaction between 

the metallic complex and the metal’s surface affecting the inhibition efficiency. 

3.4. Thermodynamics activation parameters 

The calculation of the activation parameters is fundamentally important to illustrate the 

inhibition mechanism. The thermodynamic parameters (ΔE*, ΔH*, ΔS*, and ΔG*) for the 

dissolution of mild steel in sulfuric acid solution in the absence and presence of 1×10–3 M 

MnP4 and MnP3OH complexes were obtained using Arrhenius and the transition state 

equations [7, 21] and presented in Table 3. Nyquist plots at different temperatures (Figures 7 

and 8) were used to obtain the corrosion rates that were taken as the reciprocal of Rct values. 

It is clear that increasing temperature decreases the size of the depressed semicircles which 

indicates an increase in the corrosion rate of mild steel. This behavior could be explained on 
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the basis that the increase in temperature results in desorption of the metal complex from 

mild steel surface [63].  

 
Figure 7. Nyquist plots for steel in sulfuric acid solution in the presence of the 1×10–3 M 

MnP4 at different temperatures. 

 
Figure 8. Nyquist plots for steel in sulfuric acid solution in the presence of the 1×10–3 M 

MnP3OH at different temperatures. 
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Table 3. The activation parameters of mild steel in sulfuric acid solution in the absence and presence of 

1×10–3 M MnP4 and MnP3OH complexes. 

Inspection of the tabulated data show that the activation energy (ΔE*) and entahlpy of 

activation (ΔH*) increases in the presence of MnP4 and MnP3OH complexes indicating the 

geometric blocking effect of the adsorbed cationic or neutral complex molecules on the mild 

steel surface [63]. Furthermore, the positive values of ΔH* are an indication of the 

endothermic nature of the formation process of the activated complex. Negative entropy 

(ΔS*) value in the presence of MnP3OH denotes that the activated complex represents an 

association rather than a dissociation step [64, 65]. However, the positive value of entropy 

in MnP4 indicates an increase in solvent entropy. Moreover, positive value of ΔS* means 

that an increase in disordering takes place on going from reactants to the activated complex 

in the presence of MnP4 complex [66–69]. The change of free energy of activation (ΔG*) 

values estimated in the absence and presence of both metal complexes are arranged in the 

order of 0.5 M H2SO4 < MnP4 < MnP3OH. Positive values of ΔG* indicated the formation 

of unstable activated complex in the rate determining transition state. 

3.5. Mechanism of inhibition  

Transition metal complexes’ interactions with mild steel are heavily influenced by their 

standard electrode potentials, reactivity, and the type of the ligand that might stabilize the 

metallic complexes. The standard electrode potential of divalent cations follows the order: 

Fe2+/Fe (–0.44 V) > Mn2+/Mn (–1.18 V) [27]. Therefore, the reduction of Mn2+ species on 

the mild steel surface is not possible due to their highly negative standard electrode potential 

compared to Fe2+. Based on temprature studies, the decrease in inhibition efficiency with 

rise in temperature is actually suggestive of physical adsorption mechanism [70]. 

As reported [71], the steel surface in 0.5 M sulphuric acid is positively charged, and 

this surface charge turns to negative owing to sulphate anion adsorption. Thus, the physical 

adsorption of MnP4 and MnP3OH is due to the adsorption of protonated amino groups over 

the negatively charged steel surface [72, 73]. 

The stronger interaction of MnP3OH with the mild steel surface in 0.5 M H2SO4 than 

MnP4 may be attributed to the steric hindrance of substitutes in MnP4 compared to MnP3OH. 

The closeness of the bulky ligands in MnP4 causes steric repulsion that hinders its inhibition 

potential. Such bulkiness disturbs the molecule's planarity, and thus the phenyl rings may be 

unable to engage closely enough with the metal surface to have direct contact, resulting in 

lower protection efficiency [73, 74]. 

Solution 
ΔE* 

kJ·mol–1 

ΔH* 

kJ·mol–1 

ΔS* 

J·mol–1·K–1 

ΔG* 

kJ·mol–1 

H2SO4 28 25 -181 79.8 

MnP4 142 139 176 85.7 

MnP3OH 50 47 -130 86.4 
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Moreover, the presence of hydroxyl group (OH), an electron releasing group, in 

MnP4OH increases the donating ability of MnP4OH molecules toward the mild steel surface 

by increasing their conjugations owing to presence of unshared electron pairs on the oxygen 

atoms and therefore enhances the inhibition performance compared to MnP4 [75]. 

4. Conclusion 

This study reports the effect of two manganese metal complexes against the corrosion of 

mild steel in 0.5 M sulfuric acid solution. The obtained data showed that MnP4 and MnP3OH 

complexes act as effective corrosion inhibitors for mild steel in 0.5 M H2SO4 solutions. 

Potentiodynamic polarization curves proved that both complexes behave as anodic type 

inhibitors retarding the dissolution of mild steel at anodic sites. The inhibition efficiency 

increases with increasing the concentration of both metal complexes, while it decreases with 

an increase in temperature. Their inhibitive action was accredited to their physical adsorption 

on the mild steel surface resulting in an effective protective barrier, that isolates the metal’s 

surface from the acidic harsh environment. However, the stronger interaction of MnP3OH 

with the mild steel surface in 0.5 M H2SO4 than MnP4 may be ascribed to the presence of 

hydroxyl group in the latter as well as the steric hindrance of substitutes in MnP4 compared 

to MnP3OH. From the obtained results, MnP4 and MnP3OH can be regarded as new potential 

inorganic inhibitors that can be applied against mild steel corrosion in aggressive solutions 

in industrial acid cleaning. 
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