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Abstract 

Corrosion control is of paramount importance in the realm of metals, and the quest for effective 

inhibitors is ongoing. This study delves into the potential corrosion inhibitory effect of N-

phenyl-N′-[5-phenyl-1,2,4-thiadiazol-3-yl]thiourea (NPPTT) on mild steel when exposed to a 

corrosive 1 M HCl solution. Employing a dual approach, we combine experimental weight loss 

techniques with Density Functional Theory (DFT) calculations to comprehensively analyze 

inhibition efficiency and the underlying molecular interactions in the corrosion inhibition 

process. Our investigation begins with the confirmation of the inhibitor’s structural properties 

through experimental synthesis and characterization techniques. Subsequently, we assess the 

corrosion inhibition capability by immersing mild steel samples in the aggressive HCl solution, 

both with and without the inhibitor. Our findings reveal a significant reduction in the corrosion 

rate, signifying the potential of NPPTT as an effective corrosion inhibitor. At an inhibitor 

concentration of 0.5 mM and an immersion time of 5 hours at 303 K, the inhibition efficiency 

reaches 93.9%. To unravel the mechanistic insights at the molecular level, DFT calculations are 

employed. Quantum chemical parameters are computed, shedding light on how NPPTT 

molecules interact with the mild steel surface through a combination of electrostatic interactions, 

coordination bonds, and other molecular linkages. These theoretical findings corroborate the 

experimental results, enhancing our comprehension of the inhibitor’s action. Notably, our 

adsorption isotherm studies align with the Langmuir adsorption model, further confirming the 

inhibitor’s adherence to the metal surface. In summary, this combined theoretical and 

experimental investigation explores the corrosion inhibitory potential of NPPTT for mild steel 

in a corrosive, acidic environment. Our holistic approach not only validates the inhibitor’s 
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efficiency but also advances our understanding of its molecular interactions, offering valuable 

insights for corrosion prevention strategies and the development of effective corrosion 

mitigation approaches in industrial settings. 
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 1. Introduction 

The corrosion of mild steel in acidic environments remains a critical concern, given its wide 

industrial applications and susceptibility to degradation under such conditions. Acidic media, 

containing hydrogen ions and facilitating electrochemical reactions, accelerate the corrosion 

process, leading to structural deterioration, economic losses, and safety hazards. As a result, 

the development of effective corrosion inhibition strategies is imperative [1–7]. In recent 

years, organic compounds, particularly thiadiazole derivatives, have garnered significant 

attention as potential corrosion inhibitors. These compounds possess unique molecular 

structures characterized by a five-membered heterocyclic ring containing nitrogen and sulfur 

atoms. This structural arrangement offers diverse functional groups that can interact with 

metal surfaces, exhibiting pronounced inhibitory effects through the formation of protective 

layers [8–13]. The efficacy of thiadiazole compounds as corrosion inhibitors lies in their 

ability to adsorb onto the metal surface, creating a barrier that hinders the corrosive attack. 

The adsorption process involves the interaction of functional groups with active sites on the 

metal, leading to the development of a stable and insoluble film. In acidic environments, the 

protonation of the inhibitor molecules enhances their interaction with the metal surface, 

facilitating adsorption and the subsequent formation of a protective layer [14–19]. The 

molecular design of thiadiazole-based inhibitors can be tailored to optimize their inhibitory 

performance, making them adaptable to specific corrosive environments. The presence of 

nitrogen and sulfur atoms provides coordination sites that enhance adsorption and contribute 

to the stability of the formed film. Additionally, the tunability of the chemical structure 

allows for the synthesis of inhibitors with enhanced adsorption affinity and inhibition 

efficiency [20–25]. Corrosion inhibition, a vital aspect of materials science and engineering, 

aims to mitigate the degradation of metals in various aggressive environments. Among the 

multitude of organic compounds investigated for their corrosion inhibitory properties, 

thiadiazole derivatives have emerged as a class of interest due to their diverse chemical 

structures and potential to form protective layers on metal surfaces [26–29]. Thiadiazole-

based compounds have demonstrated considerable success as effective corrosion inhibitors 

for a range of metals, including mild steel, particularly in acidic conditions. The unique 

molecular structure of thiadiazoles, containing a five-membered ring composed of nitrogen 

and sulfur atoms, contributes to their corrosion inhibition capabilities. This section reviews 

key aspects of the utilization of thiadiazoles as corrosion inhibitors, including their 
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adsorption mechanisms, structure-activity relationships, and performance in various 

corrosive environments [30–35]. 

Corrosion represents a significant challenge in various industries, where the 

degradation of metals and alloys can lead to structural failures, reduced efficiency, and 

substantial economic losses [36–39]. Mild steel, a widely used construction material, is 

particularly susceptible to corrosion, especially in aggressively acidic environments  

[40–44]. As a result, the development of efficient corrosion inhibitors is a critical area of 

research. This research article presents a comprehensive investigation into the corrosion 

inhibition properties of NPPTT on mild steel in acidic conditions. Through a combination of 

experimental weight loss techniques and Density Functional Theory (DFT) calculations, we 

aim to elucidate the inhibitory effect and the underlying molecular interactions between the 

inhibitor molecules and the metal surface. By providing insights into the adsorption 

mechanism and the formation of protective layers, this study contributes to the fundamental 

understanding of how NPPTT (Figure 1) mitigates corrosion. In particular, our work seeks 

to answer key questions regarding the mechanisms of corrosion inhibition: How do inhibitor 

molecules adsorb onto the metal surface? What is the nature of the interactions between 

NPPTT and mild steel? How effective is NPPTT in reducing the corrosion rate? By 

addressing these questions, we not only enhance our understanding of the potential of 

NPPTT-based inhibitors but also pave the way for the development of advanced corrosion 

protection strategies for mild steel in acidic environments. As industries seek 

environmentally friendly and sustainable solutions for corrosion control, the insights gained 

from this research hold promise for the design and application of effective inhibitors that 

extend the lifespan and reliability of mild steel components. Our findings are not only of 

academic interest but also of practical significance for engineering and industrial 

applications. This study aligns with the growing need for innovative corrosion prevention 

measures and the quest for materials and strategies that can withstand the challenges posed 

by aggressive environments. 

 
Figure 1. The chemical structure of NPPTT. 

1.1. Adsorption mechanisms and protective film formation 

The corrosion inhibition process involves the adsorption of inhibitor molecules onto the 

metal surface, forming a protective film that acts as a barrier against corrosive agents. 

Thiadiazole compounds offer various functional groups that can interact with metal sites, 

enabling effective adsorption. The adsorption process often occurs through the coordination 

of nitrogen and sulfur atoms with metal atoms, leading to the formation of a stable adsorbed 
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layer. The protonation of nitrogen atoms in acidic environments enhances the interaction 

between the inhibitor and the metal surface, facilitating strong adsorption [45–49]. 

1.2. Structure–activity relationships (SAR) 

The inhibitory efficiency of thiadiazoles is closely linked to their chemical structure, which 

can be modified to optimize their corrosion inhibition properties. Substituents on the 

thiadiazole ring significantly influence adsorption affinity and inhibition efficiency. 

Electron-withdrawing groups, for instance, enhance the adsorption by increasing the electron 

density on the sulfur atom, promoting its interaction with the metal surface. The presence of 

heteroatoms and aromatic rings in the compound’s structure can also contribute to improved 

adsorption and film formation [3, 50–55]. 

1.3. Performance in various corrosive environments 

Thiadiazole derivatives have displayed promising corrosion inhibition performance in a 

variety of corrosive environments, particularly in acidic solutions. Their inhibitory effects 

have been studied in media containing hydrochloric acid, sulfuric acid, and other aggressive 

acidic solutions. The compounds’ ability to form protective layers is particularly valuable in 

these environments, where the presence of hydrogen ions accelerates the corrosion process 

[56, 57]. 

1.4. Comparison with other inhibitors 

In comparison with other organic corrosion inhibitors, thiadiazoles exhibit competitive 

inhibitory efficiency. Their diverse chemical structures and the potential for tailoring their 

functional groups offer advantages in customizing inhibitors for specific applications. While 

their performance may sometimes be outperformed by certain compounds, their versatility 

and relatively low toxicity make them attractive candidates for corrosion inhibition in 

industrial applications [58–75]. 

1.5. Challenges and future prospects 

Despite the promising results, challenges remain in understanding the precise mechanisms 

of adsorption and the long-term stability of the formed protective layers. The influence of 

environmental factors such as temperature, concentration, and pH on inhibition performance 

warrants further investigation. Additionally, efforts to optimize the synthesis of thiadiazole 

derivatives to enhance their inhibitory efficiency and selectivity continue to be a focus of 

research [76–80]. In conclusion, thiadiazole derivatives have emerged as versatile and 

effective corrosion inhibitors, particularly for mild steel in acidic environments. Their unique 

molecular structure, adsorption mechanisms, and potential for structural modification make 

them promising candidates for sustainable corrosion protection strategies. As research 

continues to uncover the intricate details of their inhibitory mechanisms and their behavior 
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in diverse conditions, thiadiazole-based compounds hold substantial potential for addressing 

corrosion challenges in various industrial applications. 

2. Experimental Section 

2.1. Material and sample preparation 

The mild steel specimens used in the corrosion experiments were composed of the following 

weight percentages: C = 0.21, S = 0.05, Mn = 0.05, Si = 0.38, P = 0.09, Al = 0.01 and Fe 

(the remaining). To ensure consistent and reproducible results, mild steel samples with 

dimensions of 3 cm×2 cm×0.2 cm were meticulously prepared. Prior to experimentation, 

the samples underwent abrasion using a series of sandpapers with varying grades, ranging 

from 360 to 3000, to achieve a uniform and smooth surface. Conventional cleaning 

procedures according to G1-03/ASTM standards [81–86] were followed to eliminate any 

surface contaminants. 

2.2. Solution Preparation  

A freshly prepared corrosive medium was utilized, comprising a 1 M hydrochloric acid 

(HCl) solution obtained through the dilution of high-grade concentrated hydrochloric acid 

(37%) using bi-distilled water. The corrosion inhibitor, NPPTT, was incorporated into the 

solution at concentrations spanning 0.1, 0.2, 0.3, 0.4, 0.5 and 1 mM [81–86]. 

2.3. Weight loss analysis 

Weight loss measurements were carried out following the guidelines of ASTM G1, 

employing various concentrations of the NPPTT inhibitor as specified above. The 

experiments were conducted at a constant temperature of 303 K (chosen to align with room 

temperature). Mild steel strips were suspended in the solutions in a hanging position within 

conical flasks, ensuring complete immersion. After designated immersion time periods (1, 

5, 10, 24, and 48 hours), the mild steel strips were accurately weighed. Precise weight 

measurements of the mild steel specimens were conducted using a digital electronic 

weighing balance [30–33]. A digital thermostat was employed to maintain constant 

temperatures throughout the experiments. Additionally, weight loss studies were performed 

at varying temperatures (313, 323, and 333 K) with an immersion time of 5 hours to evaluate 

the impact of temperature on the corrosion process. The weight loss of the mild steel strips 

was determined as the difference in weight before and after immersion in the solution. To 

ensure robust results, all experiments were carried out in triplicate sets, allowing for the 

calculation of standard deviations. The inhibition efficiency (IE%) and corrosion rate (CR; 

mm/y) were calculated using the following Equations [81–86]: 

  0 0i
% 100IE w w w 

 
    (1) 

    1
R (mm y )C K w A t D  

 
      (2) 
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where: 

 w0 represents the weight loss of mild steel strip in 1 M HCl, 

 wi is the weight loss of mild steel treated with inhibitor, 

 w signifies the weight loss (mg) of the mild steel, 

 A is the area of the mild steel strip utilized (cm2), 

 t is the time in hours, 

 D represents the density of mild steel (g·cm–3), 

 K is a constant relating weight loss and corrosion rate which is equal to 87.6. 

These equations facilitate the quantification of the inhibitory effect of NPPTT and the 

corrosion rate of mild steel under different conditions. 

2.4. Theoretical studies 

Quantum chemical calculations were performed using the Gaussian 09 software [87–89] to 

gain insights into the electronic and structural properties of the inhibitor molecule. 

Optimization of the inhibitor’s molecular structure in the gaseous phase was carried out 

utilizing the B3LYP functional in conjunction with the 6-31G++ (d, p) basis set. The 

Koopmans’ theorem [37] was applied to compute the ionization potential (I) and electron 

affinity (A) of the inhibitor molecule, which are directly related to the highest occupied 

molecular orbital energy (EHOMO) and the lowest unoccupied molecular orbital energy 

(ELUMO), respectively. The following Equations 3 and 4 were employed for this purpose 

[89, 90]: 

 HOMOI E  (3) 

 LUMOA E  (4) 

Additionally, several molecular descriptors were computed to further analyze the electronic 

structure of the inhibitor: 

 electronegativity (χ), 

 softness (σ), and 

 hardness (η). 

These descriptors were evaluated using the following Equations 5–7: 

  χ 2I A   (5) 

  σ 1 I A   (6) 

 η ( ) 2I A   (7) 

A fundamental factor, the number of transported electrons (ΔN), was calculated to 

assess the electron transfer behavior within the inhibitor-mild steel interface. This parameter 

represents the fraction of electrons that are transferred during the adsorption process, 
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shedding light on the extent of charge transfer and the potential for inhibitor-metal 

interactions. 

The fraction of transferred electrons (ΔN) was calculated using Equation 8 [87–90]: 

 inh inh
(7 χ ) 2 ηN  

      (8) 

Furthermore, an accepted value of 7 eV was employed. It is noteworthy that the 

absolute hardness (
Feη ) of iron was determined to be 0, a characteristic of bulk metals where 

the ionization potential equals the electron affinity (I = A). These contextual factors further 

contribute to the comprehensive understanding of the electron transfer dynamics and the 

underlying principles governing the corrosion inhibition potential of the NPPTT molecule 

[89, 90]. 

3. Results and Discussion 

3.1. Weight loss measurements 

The effectiveness of the corrosion inhibition strategy was quantified through weight loss 

measurements, providing insights into the performance of the NPPTT inhibitor at varying 

conditions. Remarkably, a remarkable inhibition efficiency of 93.9% was achieved at an 

inhibitor concentration of 0.5 mM and an immersion time of 5 hours, all conducted at a 

temperature of 303 K (Figure 2). This finding underscores the robust corrosion-inhibitory 

potential of NPPTT under these specific conditions. The substantial inhibition efficiency 

signifies the ability of the inhibitor to significantly impede the corrosion process and protect 

the mild steel substrate from degradation. Such a high level of inhibition is promising for 

practical applications where corrosion resistance is of utmost importance [91–96]. The 

observed behavior aligns with the principles of adsorption-based corrosion inhibition, where 

the inhibitor molecules adsorb onto the metal surface, forming a protective layer that shields 

the metal from the corrosive environment. The strong interaction between the inhibitor and 

the metal surface is likely responsible for the excellent inhibitory performance demonstrated 

in this study. 

The accomplishment of such high inhibition efficiency at a relatively low inhibitor 

concentration highlights the potency of NPPTT as a corrosion inhibitor for mild steel. This 

efficiency could be attributed to the inhibitor’s molecular structure, allowing for favorable 

adsorption onto the metal surface and the formation of a robust protective layer. Additionally, 

the extended immersion time of 5 hours provides a reasonable duration to assess the 

inhibitor’s performance under prolonged exposure to the corrosive medium  

[97–100]. In conclusion, the weight loss measurements clearly indicate the exceptional 

corrosion inhibition potential of NPPTT. The achievement of a remarkable 93.9% inhibition 

efficiency at an inhibitor concentration of 0.5 mM and an immersion time of 5 hours at 303 K 

underscores the efficacy of NPPTT in safeguarding mild steel from corrosive attack. This 
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finding paves the way for further investigations and potential real-world applications of 

NPPTT as a promising corrosion inhibitor. 

 
Figure 2. The influence of NPPTT concentration on the corrosion rate and inhibition 

efficiency of mild steel exposed to 1 M HCl for 5 hours at 303 K. 

3.2. Effect of immersion time periods 

The investigation into the effect of varying immersion time periods on the corrosion 

inhibition process provides crucial insights into the dynamic nature of the NPPTT inhibitor’s 

performance [101–103]. At a temperature of 303 K, it is evident that the corrosion inhibition 

efficiency exhibits a consistent trend of improvement with prolonged immersion time. 

Specifically, with an immersion time of 10 hours, the inhibition efficiency elevates to an 

impressive 94.7% at an inhibitor concentration of 0.5 mM (Figure 3). Subsequent increases 

in immersion time further amplify the inhibitory effect, resulting in an inhibition efficiency 

of 96.3% at 24 hours and nearly stabilizing at 48 hours with an inhibition efficiency of 96.9%. 

Furthermore, when the inhibitor concentration is elevated to 1 mM, a similar pattern emerges. 

At an immersion time of 5 hours, the inhibition efficiency rises to 96.3%, indicating the rapid 

formation of a protective layer on the mild steel surface. With an extended immersion time 

of 10 hours, this efficiency further increases to 96.9%, underscoring the persistence of the 

inhibitory effect over time. Notably, at 24 hours of immersion, a substantial enhancement in 

inhibition efficiency is observed, reaching 97.4%. Subsequently, at 48 hours, the inhibition 

efficiency stabilizes at a high level of 97.6%, indicating the establishment of a robust 

protective barrier that resists the corrosive attack [104–107]. These findings collectively 

point to the dynamic nature of the inhibitor’s interaction with the mild steel surface. The 

extended immersion times provide ample opportunity for the inhibitor molecules to adsorb 

onto the metal surface and create an effective barrier against the corrosive medium. The 

trend of increasing inhibition efficiency with longer immersion durations supports the idea 

that a more complete and compact protective film is formed over time. 
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Figure 3. The combined effect of NPPTT concentration and immersion time on the corrosion 

rate and inhibition efficiency of mild steel exposed to 1 M HCl at 303 K. 

In summary, the investigation into the effect of immersion time periods on corrosion 

inhibition reveals a consistent pattern of increased inhibition efficiency with extended 

immersion times. The inhibitor’s remarkable ability to enhance corrosion resistance is 

evident across varying inhibitor concentrations and immersion durations. These insights 

underscore the potential of NPPTT as an effective corrosion inhibitor and provide valuable 

data for optimizing its practical applications. 

3.3. Effect of Temperature 

The exploration of temperature’s influence on the corrosion inhibition process offers 

valuable insights into the thermal dynamics of the NPPTT inhibitor’s performance [45]. For 

a fixed immersion time of 5 hours, it is evident that the inhibition efficiency responds 

sensitively to variations in temperature. Notably, as the temperature increases from 303 K, 

a consistent upward trend in inhibition efficiency is observed [108–111]. At 313 K, the 

inhibition efficiency experiences a notable increase, reaching 94.2% at an inhibitor 

concentration of 0.5 mM. This trend continues as the temperature escalates further (Figure 4). 

At 323 K, the inhibition efficiency rises to 95.4%, reflecting the inhibitor’s heightened 

effectiveness in countering corrosion at elevated temperatures. A subsequent temperature 

increase to 333 K continues to enhance the inhibition efficiency, resulting in an impressive 

level of 96.2%. These findings underscore the inhibitor’s ability to adapt to varying thermal 

conditions, with its corrosion protection efficacy improving as temperatures rise. The 

observed trend aligns with the principles of chemical adsorption, where higher temperatures 

facilitate enhanced interaction between the inhibitor and the metal surface. The increased 

kinetic energy of molecules at elevated temperatures is likely promoting the adsorption 

process, leading to the formation of a more robust protective layer [112–117]. The consistent 

rise in inhibition efficiency with increasing temperature not only underscores the versatility 
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of the NPPTT inhibitor but also offers insights into its potential applicability in environments 

characterized by fluctuating temperatures. The inhibitor’s ability to maintain high corrosion 

resistance across a range of temperatures highlights its potential practical utility. 

 
Figure 4. The combined effect of NPPTT concentration and various temperatures on the 

corrosion rate and inhibition efficiency of mild steel exposed to 1 M HCl for 5 hours. 

In conclusion, the examination of temperature’s impact on corrosion inhibition reveals 

a clear pattern of increasing inhibition efficiency with rising temperatures. The inhibitor’s 

remarkable adaptability and heightened efficacy under elevated temperatures underscore its 

potential as an effective corrosion inhibitor. These insights contribute to a more 

comprehensive understanding of the NPPTT inhibitor’s behavior and its potential 

applications in diverse conditions. 

3.4. Adsorption isotherm 

The adsorption isotherms provide crucial insights into the interactions between the inhibitor 

(NPPTT) and the mild steel surface, shedding light on the inhibitory properties of the 

compound. Specifically, the adsorption parameters obtained from these isotherms play a 

significant role in understanding the effectiveness of NPPTT as a corrosion inhibitor [118]. 

 Intercept and Slope: The intercept and slope values in the adsorption isotherms are 

indicative of the affinity between the inhibitor and the metal surface. A higher 

intercept signifies a stronger interaction between the inhibitor and the metal, which 

suggests better adsorption. The slope can provide information about the surface 

coverage and how it changes with the inhibitor’s concentration. These parameters are 

essential in evaluating the strength of the inhibitor’s attachment to the metal surface 

[119, 120]. 

 0
adsG (Standard Free Energy of Adsorption): The standard free energy of 

adsorption is a critical parameter that indicates the spontaneity of the adsorption 
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process. A negative value suggests that adsorption is a thermodynamically favorable 

and spontaneous process. In our study, the value of –10.77583 indicates that the 

adsorption of NPPTT onto the mild steel surface is indeed a spontaneous process, 

which is a fundamental characteristic of effective corrosion inhibition [121–123]. 

 Significance: These adsorption parameters collectively underscore the efficiency of 

NPPTT as a corrosion inhibitor. A strong intercept and a negative 0
ads

G  value imply 

that NPPTT adheres well to the metal surface, forming a protective layer that 

mitigates the corrosion rate. This adherence is a crucial aspect of effective corrosion 

inhibition, as it hinders the interaction of the corrosive medium with the metal surface 

[124]. 

The investigation of inhibitor adsorption onto the surface of mild steel furnishes a 

wealth of information through diverse adsorption isotherms. Among these, the Langmuir 

adsorption isotherm stands out as the most suitable for rationalizing the adsorption of 

inhibitor molecules on the mild steel surface due to its high linearity coefficient. The 

Langmuir adsorption isotherm is effectively described by Equation 9 [125–129]: 

 inh
inh

ads

1

θ

C
C

K
   (9) 

This equation succinctly outlines the relationship between the inhibitor concentration 

(Cinh) and the surface coverage () of the inhibitor on the mild steel surface. The percentage 

surface coverage signifies the fraction of the surface encompassed by inhibitor molecules 

and can be quantified using Equation 10 [129, 130]: 

 0 0i
θ ( )w w w 

    (10) 

The plot of against (Cinh/) (Figure 5), obtained at a temperature of 303 K, yields a 

linear correlation, affirming that the adsorption of the inhibitor adheres more accurately to 

the Langmuir adsorption isotherm in comparison to alternative isotherms. The parameter 

Kads represents the affinity between the adsorbate and the adsorbent. A higher Kads value 

indicates greater adsorption, subsequently leading to enhanced inhibition efficiency. The 

determination of Kads can be accomplished by analyzing the intercepts of the linear curves, 

as summarized in Table 1. 

Table 1. Adsorption parameters for mild steel corrosion in 1 M HCl in the absence and presence of various 

concentrations of the inhibitor. 

Intercept Slope R-Square 
ads

K  0

ads
G  

0.138 0.883 0.991 7.246 –10.775 kJ/mol 
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The relationship between the Gibbs free energy of adsorption ( 0
ads

G ) and the 

equilibrium constant of adsorption is expressed by Equation 11 [131–135]: 

 0
ads ads

ln(55.5 )G RT K     (11) 

Here, R denotes the gas constant, T represents the absolute temperature, and Kads 

signifies the equilibrium constant of the adsorption-desorption process. The negative value 

of 0
ads

G  signifies the spontaneity of the adsorption process, indicating that inhibitor 

molecules effectively adsorb onto the mild steel surface. It’s noteworthy that 0
ads

G  values 

below –20 kJ/mol characterize electrostatic interactions and the physisorption of the 

inhibitor molecule onto the metal surface. Conversely, highly negative 0
ads

G  values 

(>40 kJ/mol) suggest a covalent-like bond, implying chemisorption [136–141]. In this 

context, the calculated 0
ads

G  value of –10.775 kJ/mol (Table 1) implies the presence of 

strong chemical interactions (chemisorption) between the NPPTT inhibitor and the mild steel 

surface. Therefore, the adsorption process is primarily chemisorption, indicating the 

formation of chemical bonds between the inhibitor and the metal surface. 

 
Figure 5. Langmuir isotherm of the NPPTT plot for mild steel in HCl. 

In summary, the application of the inhibitor, supported by the calculated adsorption 

parameters, underscores the adsorption process of the inhibitor on the mild steel surface. 

This thorough understanding enriches our comprehension of the intricate adsorption 

dynamics at play within the corrosion inhibition system. 

3.5. DFT calculations  

3.5.1. Electronic properties 

Density Functional Theory (DFT) calculations play a pivotal role in elucidating the 

electronic structure and properties of molecules. In the current study, the calculated Highest 
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Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) 

energies are –8.445 eV and –2.212 eV, respectively. These energy values provide essential 

insights into the reactivity and stability of the molecule [142–144]. The HOMO represents 

the energy level of the highest electron-filled orbital, while the LUMO signifies the energy 

level of the lowest unoccupied orbital. The energy gap between the HOMO and LUMO, 

known as HOMO–LUMO gap, is indicative of the molecule’s ability to donate or accept 

electrons, which influences its chemical reactivity. A smaller HOMO–LUMO gap often 

indicates greater reactivity [18, 55]. The ionization energy (I) is the energy required to 

remove an electron from a neutral molecule to form a positively charged ion (cation). The 

electronic affinity (A) is the energy released when an electron is added to a neutral molecule 

to form a negatively charged ion (anion). Both ionization energy and electronic affinity can 

be calculated using the HOMO and LUMO energies. These values reflect the molecule’s 

tendency to lose or gain electrons and can shed light on its chemical behavior. A higher 

ionization energy indicates that the molecule holds its electrons more tightly, making it less 

likely to ionize (Figure 6). Conversely, a higher electronic affinity suggests that the molecule 

has a greater propensity to accept electrons [145–149]. 

The electronegativity (χ) of a molecule quantifies its ability to attract electrons. It can 

be calculated from the ionization energy (I) and electronic affinity (A) using Equation 5. 

Softness is a concept derived from global hardness and can be calculated using Equation 6. 

Softness quantifies the sensitivity of a molecule’s energy to electron addition or removal 

[150–153]. A higher softness value indicates that the molecule undergoes significant energy 

changes when interacting with other molecules or undergoing reactions. On the other hand, 

a lower softness suggests a relatively stable molecule less prone to significant energy 

changes upon interaction. Global hardness (η) is a measure of molecular stability and 

resistance to electron exchange. It can be calculated using the ionization energy and 

electronic affinity as per Equation 7. A higher electronegativity indicates a stronger electron-

attracting ability, while a larger global hardness implies a more stable molecule with less 

susceptibility to electron transfer. In this case, the calculated HOMO and LUMO energies 

can be used to determine the ionization energy, electronic affinity, electronegativity, and 

global hardness of the extract molecule. These properties provide valuable insights into the 

molecule’s reactivity, stability, and potential interactions with other molecules in chemical 

and biological systems [154–156]. The fraction of transferred electrons (ΔN) represents the 

charge transfer that occurs when a molecule interacts with another entity. It can provide 

insights into the electron-donating or electron-accepting nature of the molecule. In this case, 

ΔN is calculated using Equation 8. Calculating the softness of the molecule, derived from 

the global hardness, offers information about the molecule’s reactivity and interaction 

tendencies. A high softness value implies that the molecule is sensitive to electronic changes, 

indicating potential reactivity with other molecules or external stimuli. On the other hand, a 

low softness value suggests a relatively stable molecule that undergoes minimal energy 

changes during interactions [157–160]. 



 Int. J. Corros. Scale Inhib., 2024, 13, no. 1, 38–78 51 

    

 

The fraction of transferred electrons (ΔN) is a valuable parameter that characterizes the 

electron transfer behavior of the inhibitor molecule. A positive ΔN value indicates that the 

molecule tends to lose electrons, acting as an electron donor, while a negative value signifies 

electron acceptance, making it an electron acceptor. This information is particularly relevant 

in understanding how the inhibitor interacts with metal surfaces and its potential to donate 

or accept electrons, influencing its corrosion inhibition properties. Incorporating softness 

and ΔN calculations into the current study enriches the understanding of the inhibitor 

molecule’s electronic behavior, reactivity, and potential interactions. These insights 

contribute to a comprehensive assessment of the molecule’s suitability as a corrosion 

inhibitor and its interactions within a corrosive environment [161–163]. Table 2 provides a 

comprehensive overview of the key electronic properties of the inhibitor molecule. It 

encompasses the energy levels of the HOMO and LUMO orbitals, the energy gap between 

them, ionization energy, electronic affinity, electronegativity, global hardness, softness, and 

the fraction of transferred electrons [164, 615]. These properties collectively offer insights 

into the molecule’s reactivity, stability, and interactions with other molecules or surfaces, 

which are critical factors in understanding its corrosion inhibition potential [166, 167]. 

Table 2. Electronic properties and their implications. 

Property Value 

HOMO energy –8.445 eV 

LUMO energy –2.212 eV 

Energy Gap (HOMO–LUMO) 6.233 eV 

Ionization energy (I) 8.445 eV 

Electronic affinity (A) 2.212 eV 

Electronegativity (χ) 5.329 eV 

Global hardness (η) 3.116 eV 

Softness (S) 0.321 

Fraction of transferred electrons (ΔN) 0.076 

Table 2 summarizes the electronic properties of the inhibitor molecule along with their 

implications for its corrosion inhibition potential. The values include the Highest Occupied 

Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies, 

the energy gap between them, ionization energy, electronic affinity, electronegativity, global 

hardness, softness, and the fraction of transferred electrons. These properties collectively 

shed light on the molecule’s reactivity, stability, and interaction tendencies, providing 

insights into its effectiveness as a corrosion inhibitor. The relationships between these 

electronic properties and inhibition efficiency are discussed in the context of their influence 
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on adsorption behavior and redox interactions at the metal surface. Let’s discuss the values 

in the table and their implications on inhibition efficiency [168–170]. 

1. HOMO and LUMO Energy: The HOMO energy of –8.445 eV represents the 

energy level of the highest electron-filled orbital, while the LUMO energy of  

–2.212 eV represents the energy level of the lowest unoccupied orbital. The 

energy gap (HOMO–LUMO gap) of 6.233 eV suggests a substantial separation 

between the highest occupied and lowest unoccupied orbitals. A larger energy gap 

usually indicates lower reactivity and greater stability for the molecule. 

2. Ionization Energy (I): The ionization energy of 8.445 eV is the energy required 

to remove an electron from the molecule. A higher ionization energy implies that 

the molecule is less likely to lose an electron and undergo oxidation. This suggests 

that the inhibitor molecule tends to hold onto its electrons, which could contribute 

to its inhibition efficiency. 

3. Electronic Affinity (A): The electronic affinity of 2.212 eV is the energy released 

when an electron is added to the molecule. A higher electronic affinity indicates a 

stronger tendency to gain electrons and undergo reduction reactions. This property 

can influence the molecule’s interaction with metal surfaces and its capacity to 

form stable adsorbed layers. 

4. Electronegativity (χ): The electronegativity of 5.329 eV characterizes the 

molecule’s ability to attract electrons. Higher electronegativity implies stronger 

electron-attracting ability, which could promote interactions with positively 

charged metal ions or surfaces, contributing to inhibition efficiency. 

5. Global Hardness (η): The global hardness of 3.116 eV reflects the molecule’s 

resistance to electron exchange. A higher hardness value indicates a more stable 

molecule, which could lead to robust adsorbed layer formation on the metal 

surface. 

6. Softness (S): The softness value of 0.321 quantifies the sensitivity of the 

molecule’s energy to electron addition or removal. A low softness suggests a 

stable molecule, while a higher value indicates reactivity. In terms of inhibition 

efficiency, a stable inhibitor might form a more consistent protective layer on the 

metal surface. 

7. Fraction of Transferred Electrons (ΔN): The value of 0.076 suggests that the 

molecule tends to lose electrons. This could indicate that the inhibitor molecule 

acts as an electron donor, participating in redox reactions that could be relevant to 

the corrosion inhibition process. 
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Figure 6. The (a) optimized structure, (b) EHOMO, and (c) ELUMO of NPPTT molecules. 

In relation to inhibition efficiency, these electronic properties collectively influence the 

molecule’s interactions with the metal surface and the surrounding environment. For 

example, a high ionization energy and electronic affinity suggest that the molecule could 

interact favorably with metal surfaces, potentially forming protective adsorbed layers [171–

175]. The electronegativity and hardness values indicate the molecule’s potential to establish 

stable interactions with metal ions. It’s important to note that while these properties provide 

valuable insights, the overall inhibition efficiency also depends on factors such as the 

adsorption strength, the nature of the metal surface, and the specific corrosion environment. 

A combination of favorable electronic properties and appropriate adsorption behavior 

contributes to higher inhibition efficiency. 

3.5.2. Atomic charges 

The distribution of atomic charges within a molecule can significantly influence its 

interaction with other species, especially when considering chemisorption involving 

coordination bonds and physical interactions like van der Waals forces [176–181]. 

Chemisorption involves the formation of chemical bonds between the adsorbate (an inhibitor 

molecule) and the adsorbent surface (iron). In this context, the atomic charges play a crucial 

role in determining the nature and strength of these bonds. Specifically, the charges on atoms 

that can donate or accept electrons are of particular importance. In the case of the current 

inhibitor molecule and its interaction with the d-orbitals of iron, atoms such as N, C, and S 

possess charges that suggest electron-rich and electron-deficient regions. For example, 

atoms with negative charges (N, S) can act as electron donors, potentially forming 

coordination bonds by donating electrons to vacant d-orbitals of iron. Conversely, atoms 

with positive charges (C) can act as electron acceptors, potentially forming bonds by 

accepting electrons from iron. Van der Waals forces are weak intermolecular interactions 

that arise due to temporary fluctuations in electron distribution, resulting in temporary 

charges that induce attraction between molecules. Atomic charges influence the strength of 
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van der Waals interactions. For the tested inhibitor molecule, atoms with small positive or 

negative charges (close to zero) are likely to contribute to van der Waals forces. These forces 

are particularly relevant when molecules come close together, allowing temporary dipoles 

to induce attraction [182–188]. The distribution of atomic charges (Figure 7) in the tested 

inhibitor molecule can facilitate its interaction with the iron surface. Negative charges can 

facilitate electron transfer and coordination bond formation with iron’s d-orbitals, which 

could enhance chemisorption. Positive charges might contribute to the stabilization of the 

adsorbed layer by interacting with polarized regions of the metal surface [189–191]. Van 

der Waals forces, while weak, can play a significant role when molecules are in close 

proximity. The presence of partial charges, even small ones, can lead to temporary dipoles 

and induce attractive forces between molecules and surfaces. It’s important to note that while 

atomic charges provide insights, the exact nature of interactions depends on the specific 

geometry, electronic structure of the surface, and other factors such as steric effects. The 

interplay of chemisorption and van der Waals forces contributes to the overall adsorption 

behavior of the tested inhibitor molecule on the metal surface [192–198]. 

 
Figure 7. Atomic charges of NPPTT molecules in the gas phase. 

3.6. Inhibition mechanism 

The corrosion inhibition mechanism underlying the effectiveness of organic molecules 

involves the establishment of a protective layer on the surface of the metal, inhibiting the 

corrosion process. In the case of the tested inhibitor in the current study, several factors point 

towards a plausible mechanism that contributes to the observed inhibition behavior. 

1. Protective Layer Formation: The primary mechanism of corrosion inhibition 

involves the formation of a protective layer that adheres to the surface of the mild 

steel. This layer acts as a barrier, preventing the direct interaction of the corrosive 

environment with the metal surface. Gravimetric measurements affirm that the 
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tested inhibitor significantly reduces the corrosion of mild steel, underscoring the 

importance of this protective layer [199–203]. 

2. Langmuir Adsorption Model: The adsorption isotherm studies reveal that the 

interaction between the inhibitor molecules and the mild steel surface adheres to 

the Langmuir adsorption model. This model implies monolayer adsorption, where 

inhibitor molecules form a single layer on the metal surface. This corroborates the 

notion of a protective layer being established, as monolayer coverage effectively 

shields the metal from corrosive species [204–207]. 

3. Electrostatic Interactions: The adsorption behavior of the protective film is 

governed by several mechanisms. Firstly, electrostatic interactions play a 

significant role. Protonated heteroatoms within the inhibitor molecule can interact 

with charged sites on the mild steel surface. This electrostatic interaction allows 

the inhibitor to anchor itself onto the metal, enhancing the stability and coverage 

of the protective layer [208–213]. 

4. Linkages and Coordination Bonds: Another crucial aspect of the adsorption 

behavior involves the formation of various linkages between the inhibitor 

molecules and the mild steel surface. These linkages can include coordination 

bonds, where electron-rich atoms in the inhibitor donate electrons to vacant d-

orbitals on the metal surface. This coordination enhances the binding of the 

inhibitor to the metal, leading to the formation of a robust protective layer [214–

217]. 

Figure 8 provides an insightful depiction of the intricate interactions between NPPTT 

compounds and the mild-steel surface, shedding light on the specific adsorption mechanisms 

that contribute to the inhibitor’s corrosion inhibition properties. This enhanced 

understanding contributes to unraveling the protective role of NPPTT in corrosion 

prevention. 

 
Figure 8. Suggested inhibition mechanism of NPPTT for mild steel in an acidic environment. 

1. Pi-Electron and d-Orbital Interaction: The predominant mode of adsorption 

between NPPTT molecules and the mild-steel surface involves a fascinating 

interplay between the pi-electrons residing in the aromatic rings of NPPTT and 
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the unoccupied d-orbital of the metal atoms on the surface. This interaction is 

characterized by the sharing of electrons, where the aromatic pi-electrons align 

themselves with the vacant d-orbital, forming a coordination bond. This 

arrangement not only facilitates the stable binding of NPPTT to the metal but also 

engenders a protective layer that inhibits corrosive attack [218, 221]. 

2. Lone Electron Pair and d-Orbital Interaction: Beyond the pi-electron 

interaction, a secondary method of adsorption emerges, emphasizing the 

significance of heteroatoms in NPPTT. The lone electron pairs residing in these 

heteroatoms forge interactions with the available unoccupied d-orbitals on the iron 

surface. This bond formation is characterized by the sharing of electrons from the 

d-orbitals of the iron atom and the lone electron pairs from the heteroatoms. This 

mutual sharing facilitates the establishment of a robust and effective protective 

layer [222–225]. 

3. Collaborative Electron Sharing: The essence of both interaction methods is the 

sharing of electrons - a collaborative exchange that underpins the binding of 

NPPTT molecules to the mild-steel surface. This electron-sharing paradigm not 

only ensures the adsorption of the inhibitor but also contributes to the creation of 

an adsorbed layer that acts as a formidable barrier against corrosive agents [226–

228]. 

4. Implications for Inhibition Efficiency: The intricate interplay between the pi-

electrons, d-orbitals, and lone electron pairs forms the crux of the corrosion 

inhibition mechanism of NPPTT. By engaging these diverse interaction pathways, 

NPPTT maximizes its coverage on the metal surface, leading to effective 

inhibition. This comprehensive adsorption behavior ensures the establishment of 

a protective film that shields the metal from the corrosive environment [229–231]. 

5. Innovation in Corrosion Prevention: Understanding these mechanisms not only 

enriches our comprehension of corrosion inhibition but also paves the way for 

innovation in protective coatings and materials. By capitalizing on the tailored 

interactions between organic molecules and metal surfaces, it becomes possible to 

design more efficient and tailored corrosion inhibitors that provide enhanced 

longevity and protection [232–235]. 

The suggested corrosion-inhibition mechanism involves the adsorption of the inhibitor 

molecules onto the mild steel surface, forming a protective layer that shields the metal from 

the corrosive environment. This adsorption is governed by electrostatic interactions and 

coordination bonds, both of which contribute to the stability and effectiveness of the 

protective layer. The Langmuir adsorption model further supports the monolayer coverage 

of the inhibitor molecules. This multifaceted mechanism underscores the inhibitor’s ability 

to mitigate corrosion by creating a barrier that hinders the interaction between the metal and 

the corrosive medium. In sum, Figure 8 underscores the intricate dance of electrons and 

orbitals that underlie the interactions between NPPTT compounds and the mild-steel surface 
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[236–240]. This figure encapsulates the sophisticated mechanisms through which NPPTT 

molecules establish protective layers, cementing their role as potent corrosion inhibitors. 

4. Conclusion 

In this study, we comprehensively investigated the potential of NPPTT as a corrosion 

inhibitor for mild steel in 1 M HCl solution. Our findings have important implications for 

corrosion prevention and the design of novel inhibitor molecules. We observed that NPPTT 

exhibits remarkable corrosion inhibition efficiency, with the highest recorded at an inhibitor 

concentration of 0.5 mM and an immersion time of 5 hours at 303 K. The variation of 

immersion time and temperature consistently confirmed the inhibitor’s efficacy under 

different conditions. Our experimental results were complemented by density functional 

theory (DFT) calculations, providing insights into the molecular properties and interactions 

responsible for the observed inhibition behavior. The adsorption isotherm studies indicated 

that NPPTT adheres to the mild-steel surface following the Langmuir adsorption model. 

Analysis of atomic charges highlighted the potential for electrostatic interactions and 

coordination bonds between NPPTT molecules and the mild-steel surface. Furthermore, the 

investigation of electronic properties, including HOMO and LUMO energies, ionization 

energy, electronic affinity, electronegativity, global hardness, and softness, contributed to 

the understanding of the molecule’s stability and potential interactions. Our proposed 

corrosion-inhibition mechanism involves the formation of a protective layer on the mild-

steel surface. This layer, facilitated by electrostatic interactions, coordination bonds, and 

other molecular linkages, effectively hinders corrosive attack, reducing corrosion rates. In 

conclusion, this research not only presents a comprehensive evaluation of NPPTT as a 

corrosion inhibitor for mild steel but also contributes to a deeper understanding of the 

underlying molecular interactions. The integration of experimental and theoretical 

approaches provides a robust foundation for designing effective corrosion inhibitors and 

informs future material protection and sustainable corrosion prevention strategies. Our 

insights pave the way for innovations in corrosion inhibition research and applications across 

industries. 
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