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Abstract 

Metals are frequently exposed to corrosion by a wide variety of sources in various 

manufacturing environments. Effective inhibitors are urgently necessary to put an end to this 

situation. The investigation that follows requests to evaluate the potential of 5-(4-pyridyl)-3-

mercapto-1,2,4-triazole (PMT) to prevent mild steel from corroding in an acid environment. 

PMTs inhibitory mechanisms were identified by weight loss experiments, Density Functional 

Theory (DFT) calculations and Langmuir adsorption isotherm analysis. The study found that 

when mild steel was dipped into 1 M HCl under optimal inhibitor conditions and at a 

concentration of 0.5 mM, the inhibition efficiency reached 97.1% at 303 K. Experiments of 

weight loss and density functional theory (DFT) are utilized to explore inhibitory mechanisms, 

and are also offered indicates about PMT’s adsorption behavior on metal surfaces. The 

Langmuir adsorption isotherm suggestions a first indication about the compound’s 

effectiveness, but it may also assist as a starting point for future developments in research on 

corrosion inhibition. These results provide some important knowledge to us about the 

fundamental mechanism of corrosion protection, and have important applications to industries 

trying to protect metals from corroding threatened in aggressive environments. 
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1. Introduction 

Corrosion presents a widespread risk to the structural stability of metallic components within 

various industrial sectors, including critical infrastructure, transportation, and the oil and gas 

industry [1–8]. This natural process results in compromised safety, reduced operational 

efficiency, and substantial economic losses. Substantial efforts have been devoted to 

identifying effective strategies to mitigate corrosion, with corrosion inhibitors emerging as 

a prominent solution. These chemical compounds are intricately formulated to create 

protective layers on metal surfaces, thereby inhibiting the electrochemical reactions that lead 

to corrosion [9–16]. These chemical compounds have been meticulously formulated to 

create protective layers on metal surfaces, thereby inhibiting the electrochemical reactions 

that lead to corrosion [17–22]. Their widespread use can be attributed to their cost 

effectiveness, ease of application and ability to extend the lifespan of materials [23–27]. 

Organic corrosion inhibitors, whether derived from natural or synthetic sources have shown 

effectiveness and sustainability [28–33]. When these organic inhibitors are applied to metal 

surfaces they create films that assistance defend against corrosive attacks. The growing 

popularity of inhibitors, in corrosion prevention efforts is due, to their friendly nature ability 

to biodegrade and diverse range of inhibitive properties [34–66]. The basic process of 

inhibiting corrosion involves the adsorption of molecules, onto metal surfaces. In 

environments these molecules selectively attach to metal surfaces through chemisorption 

and physisorption [37–42]. Chemisorption involves the formation of chemical bonds 

creating a layer that limits the entry of corrosive agents. On the hand physisorption is a less 

stable and reversible process that lacks strong chemical bonding [43–46]. The ability of 

corrosion inhibitors to effectively adhere to metal surfaces and form shields depends on 

various factors, including the concentration of the inhibitor, temperature and duration of 

immersion. These factors have an impact, on how the inhibitors adsorb and ultimately affect 

their inhibitory efficiency [47–52]. The Langmuir adsorption isotherm plays a role, in 

studying the impact of adsorption inhibitors on metal surfaces. It offers insights into surface 

coverage and the equilibrium constant (Kads), for adsorption [53–55]. Understanding the 

adsorption isotherm plays a role, in enhancing our knowledge of how organic inhibitors and 

metal surfaces interact. This in turn aids in the advancement of corrosion inhibitors that’re 

more efficient [57–59]. The recent study focused on examining the properties of 1,2,4-

triazole derivatives as potential organic substances that can prevent mild steel corrosion in 

acidic environments containing hydrochloric acid (HCl). Both weight loss measurements 

and advanced calculations based on Density Functional Theory (DFT) have been used to 

understand mechanisms that inhibit corrosion [60–66]. The analyses have produced 

significant findings, paving the way for the primary aim of this research: to investigate the 

corrosion inhibition capacity of PMT (Figure 1) and reveal its outstanding effectiveness in 
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protecting mild steel from corrosive deterioration. The study utilizes a research approach 

that involves conducting weight loss experiments, analyzing Langmuir adsorption isotherm 

and performing calculations using DFT quantum chemistry methods. 

 
Figure 1. Shows the chemical structure of PMT. 

Organic corrosion inhibitors have become a selection for protecting metals against 

corrosion [67–70]. Industries are drawn to their advantages such as being friendly versatile, 

cost effective compatible, with existing systems and sustainable. However, there are still 

challenges that must be overcome to fully harness the potential of these inhibitors in 

promoting corrosion protection strategies. These challenges are important to address in order 

to achieve long term stability, compatibility, with coatings and a better understanding of 

environments [71–74]. It is crucial to tackle these challenges if we want to harness the 

potential of organic inhibitors in promoting sustainable corrosion protection strategies [75–

80]. In industries inhibitors are highly interesting due to their eco-friendliness, flexibility, 

cost effectiveness, compatibility, with existing systems and sustainability. However further 

research and development are necessary to address challenges such as long term stability, 

compatibility, with coatings and the understanding of environments [71–74]. It is crucial to 

overcome these challenges in order to fully unleash the potential of inhibitors in promoting 

corrosion protection strategies [75–80]. The research findings demonstrate that PMT 

exhibits inhibition efficiency of 97.1% at 303 K in a demanding 1 M HCl solution when used 

at an inhibitor concentration of 0.5 mM. PMT demonstrates an ability to inhibit corrosion, 

in environments production it an effective corrosion inhibitor for mild steel. The study 

reveals information, about how PMT molecules interact with the metal surface, their 

adsorption behavior. According to the Langmuir adsorption isotherm, PMT molecules 

adhere strongly and favorably to the surfaces of steel resulting in high surface coverage and 

a significant equilibrium constant of adsorption (Kads). This comprehensive understanding 

establishes a robust foundation for further advancements in corrosion inhibition research, 

holding promising implications for industries seeking robust solutions to protect metals in 

challenging environments. The research objectives were to quantitatively evaluate the 

corrosion inhibition efficiency of PMT under specific conditions, in particular in 1 M HCl 

solid solution at an inhibitor concentration of 0.5 mM and a temperature of 303 K. The 

second aim is to use Langmuir adsorption isotherms for exploration adsorption behavior of 

the inhibitor on the metal surface. Finally, advanced quantum chemical DFT calculations 

were employed to explore the interactions between the PMT inhibitor and the mild steel 

surface. This research aims to develop a comprehension of PMTs mechanism for inhibiting 
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corrosion aiding in the enhancement of efficient and environmentally friendly strategies for 

corrosion protection. The consequences clarify important promise for industries demanding 

strong solutions to protection metallic materials, contributing to the improvement of 

corrosion science and engineering. Through highlighting on the inhibitory properties and 

mechanisms of this triazole derivative, this research aims to assist the adoption of novel and 

potent corrosion inhibitors, furthering the field of corrosion science and engineering. 

2. Experimental Methodology 

2.1. Materials and reagents 

We obtained all the materials and reagents for this study from Sigma Aldrich Malaysia. To 

create a solution for our experiments, we prepared an acid (HCl) solution with a 

concentration of 1 M by diluting a high quality 37% HCl solution with double distilled water. 

In order to achieve inhibitor concentrations ranging from 0.1, to 1.0 mM we diluted the 

inhibitor in the 1 M HCl solution [81]. 

2.2. Sample preparation 

The mild steel tests applied in this study underwent analysis for their chemical composition 

using X-ray fluorescence spectrometry. The mild steel specimens used in the corrosion 

experiments were composed of the following weight percentages: C (0.21), S (0.05), 

Mn (0.05), Si (0.38), P (0.09), Al (0.01), and Fe (the remaining). The samples were prepared 

following the ASTM G1-03 protocol and polished using silicon carbide series plates (120, 

600, and 1200). Before immersion, the mild steel coupons were thoroughly cleaned with 

double-distilled water and acetone and then dried in an oven [80, 81]. 

2.3. Weight loss measurements 

The weight loss measurements were performed by immersing the mild steel samples in 

500 ml glass beakers containing 400 ml of the prepared 1 M HCl solution with varying 

concentrations of the inhibitor. The experiments were carried out at a temperature of 303 K 

using a water bath, following the NACE TM0169/G31 protocol. The samples were exposed 

for different time periods (1, 5, 10, 24, and 48 hours), and the products of corrosion were 

carefully wiped off the surface before the coupons were dried and weighed. The difference 

in weight was recorded, and the mass variation at the estimated time, along with the original 

mass of the metallic sample, represented the weight loss attained. The mild steel coupons 

were immersed in corrosive media (1 M HCl) containing different inhibitor concentrations 

(0.1, 0.2, 0.3, 0.4, 0.5, and 1 mM) at temperatures of 303, 313, 323, and 333 K using a water 

bath to examine the effect of temperature [80, 83]. The average rate of corrosion was 

calculated after being exposed in triplicate, and the rate of corrosion and inhibition efficiency 

were determined using the following Equations (1, 2) [80–88]: 
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where W is the weight loss (mg) of the sample, a is the surface area of mild steel (cm2), d is 

the density of the mild steel coupon (g/cm3), and t is the exposure time (h). The corrosion 

rates in the absence and presence of the inhibitor were denoted as 
0RC and  R i

C , respectively. 

The coverage area (θ) for both uninhibited and inhibited solutions was determined using 

the following equation [80–88]: 
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2.4. DFT calculations 

ChemOffice software was utilized for conducting quantum chemical calculations. To 

investigate the interactions between the inhibitor and the metal surface, Density Functional 

Theory (DFT) calculations were performed using Gaussian 09 Revision C.01 software. The 

optimization of the inhibitors structure, in its form was achieved through the B3LYP method. 

The basis set “6 31G++(d, p)”. By applying the Koopmans theory, we determined the 

ionization potential (I) and electron affinity (A) based on the occupied orbital (EHOMO) and 

lowest unoccupied molecular orbital (ELUMO) respectively. Equations (4, 5) were used to 

calculate I and A [89, 90]. 

 I=–EHOMO (4) 

 A=–ELUMO (5) 

The values for electronegativity (χ), hardness (η), and softness (σ) were determined 

using Equations (6–8). 
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Additionally, we determined the number of electrons transferred (∆N) by applying 

Equation (9) mentioned in references [90–93]. The electronegativity value of iron was set at 
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7 eV while the hardness value was considered to be zero eV. Taking these findings into 

account, we formulated Equation (10). 
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2.5. Adsorption isotherm studies 

To gain comprehensive insights into the properties of the studied molecules, various types 

of adsorption isotherms, including Frumkin, Temkin, and Langmuir, were employed. These 

isotherms aid in determining the extent of inhibitor coverage on the metal surface. Weight-

loss measurements were conducted to assess the surface coverage of the inhibitor at various 

concentrations in corrosive media [94–96]. 

3. Results and Discussion 

3.1. Weight loss measurements 

Weight loss measurements were performed to evaluate the corrosion behavior of mild steel 

samples in a corrosive environment. The experiments were conducted at 303 K, and the 

samples were immersed for 5 hours in a 1 M HCl solution with varying concentrations of 

the inhibitor, namely “PMT”. The obtained results, represented in Figure 2, illustrate the 

corrosion rate and inhibition effectiveness [97–100]. As shown in Figure 2, the addition of 

PMT to the corrosive solution leads to a significant reduction in the corrosion rate of the 

mild steel samples. The inhibitory effect exhibits an increasing trend with rising PMT 

concentrations, reaching its highest efficiency at 0.5 mM. This behavior can be attributed to 

the higher concentration of PMT molecules available for adsorption onto the mild steel 

surface. The adsorption of PMT molecules forms a protective layer that acts as a barrier, 

hindering the corrosive attack and thereby enhancing the inhibition effectiveness [101–105]. 

Formation of this barrier film on the metallic surface protects the metal against an aggressive 

environment and thereby reduces the corrosion rate. Nevertheless, it should be noted that 

with higher PMT concentrations than 0.5 mM the inhibition efficiency decreases. High 

concentrations of dissolved oxygen lead to desorption of excessive PMT molecules from 

mild steel surface. The desorption process weakens the protective layer, reducing its ability 

to prevent corrosion effectively [106–109]. Overall, the weight loss measurements clearly 

demonstrate the corrosion inhibition potential of PMT for mild steel in a 1 M HCl solution. 

The results highlight the importance of alteration the concentration of PMT to achieve its 

inhibitory impact [110–112]. Moreover, these findings offer insights into how PMT 

molecules adhere to the surface of steel revealing the mechanisms that prevent corrosion. 
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Figure 2. The corrosion rates and inhibition effectiveness on mild steel in hydrochloric acid 

solutions with and without the inhibitor after immersing the samples for a period of 5-hour at 

303 K. 

In this research we conducted a study to examine how the length of time something is 

immersed affects the effectiveness of preventing corrosion, on steel in a solution [113–118]. 

We submerged samples of steel in a solution containing hydrochloric acid and different 

amounts of an inhibitor for periods (1, 5, 10, 24 and 48 hours) at a temperature of 303 K. 

The results we obtained are shown in Figure 3. Demonstrate how the efficiency of corrosion 

prevention changes based on the duration of immersion [119–122]. Figure 3 clearly 

indicates that as the immersion time increases up to 5 hours there is an improvement in 

corrosion prevention. The efficiency continues to improve up to 24 hours before 

experiencing a decline in protective performance [123–125]. Finally, after 48 hours the 

efficiency stabilizes. We believe that this increase, in efficiency can be attributed to inhibitor 

molecules attaching themselves to the surface of steel thereby forming a protective layer. 

This interaction allows the van der Waals forces to come into play, facilitating the adsorption 

of the inhibitor molecules onto the metal surface [126–131]. Although some inhibitor 

molecules may detach from the surface during longer exposure durations, reducing the 

coverage area and overall effectiveness, the sustained high inhibition efficiency observed 

during extended exposure demonstrates the stability of the adsorbed inhibitor layer in the 

corrosive solution. The protective layer formed by the inhibitor molecules acts as a barrier, 

preventing direct corrosive attacks on the metal surface and, consequently, reducing the 

corrosion rate [132–135]. These findings highlight the significance of how an object’s 

immersed in the corrosion inhibition process. When objects are exposed for a period it allows 

for an absorption of inhibitor molecules and the creation of a strong protective layer. This 
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knowledge can be valuable, in determining the time and concentration required for use thus 

maximizing corrosion protection, for metals in corrosive environments [136–139]. 

As the inhibitor concentration increases, there is a consistent reduction in corrosion 

rates at all immersion times. After 1-hour immersion, notable reductions in corrosion rates 

are observed, indicating a rapid inhibitive effect even at low concentrations [140–143]. After 

5 to 24-hour immersion, the inhibitory effect persists and becomes more pronounced with 

time, emphasizing the concentration-dependent corrosion inhibition capacity. At low 

concentrations, the corrosion rates generally decrease with longer immersion times, 

suggesting a gradual development of the inhibitive effect [144–147]. At moderate 

concentrations (0.4–0.5 mM), the initial reduction in corrosion rates is significant within the 

first hour, and further immersion (5–24 hours) continues to enhance the inhibitive effect, 

albeit at a diminishing rate. At high concentrations, the corrosion rates are already low at the 

1-hour mark, and further immersion yields marginal additional reduction, indicating a 

saturation effect. 0.5 mM concentration stands out, consistently offering low corrosion rates 

across all immersion times. It demonstrates an optimal balance between concentration and 

inhibitory effectiveness [148–152]. Within 1 to 5 hours, significant reductions in corrosion 

rates occur within the first 5 hours, indicating rapid adsorption and the initiation of the 

inhibitive process. Within 5 to 24 hours, the continued decline in corrosion rates suggests 

the formation of a more stable and robust inhibitor layer over prolonged exposure. For 

scenarios requiring short-term protection, concentrations as low as 0.1 mM already exhibit 

substantial inhibitory effects within the first hour [153–155]. Concentrations of 0.5 mM 

show promising prolonged inhibition, making them suitable for applications where extended 

protection is crucial. In conclusion, the data underscores the concentration-dependent and 

time-sensitive nature of the inhibitory effects of the studied compound. Higher 

concentrations and longer immersion times consistently lead to lower corrosion rates, 

emphasizing the need for a nuanced approach to inhibitor selection based on specific 

application requirements [156–159]. Further analysis, including statistical methods and 

modeling, could provide deeper insights into the correlation between inhibitor concentration, 

immersion time, and corrosion rates, aiding in the optimization of corrosion protection 

strategies. 

The results obtained in this study reveal a significant reduction in the inhibition 

efficiency of the tested inhibitor derivative “PMT” as the temperature increases from 303 K 

to 333 K (Figure 4). At 303 K, a concentration of 0.5 mM of the inhibitor demonstrated an 

impressive inhibition efficiency of 97.1%, indicating its effectiveness in protecting the 

metallic substrate from corrosion. However, at 333 K, the inhibition efficiency decreased to 

91.6%, indicating a decrease in the inhibitory performance of “PMT” at higher temperatures. 

Several factors may contribute to this observed reduction in inhibition efficiency with 

increasing temperature. Firstly, elevated temperatures intensify the thermal agitation of the 

“PMT” molecules and the corrosive solution [160–166]. This increased thermal agitation 

can disrupt the adsorption process of the inhibitor onto the metal surface, leading to a 
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reduction in the formation of a protective layer. Additionally, higher temperatures can 

enhance the reactivity of the corrosive environment, resulting in increased corrosion rates 

even in the presence of the inhibitor [167–169]. 

 
Figure 3. A comparison of corrosion rates and inhibition effectiveness in hydrochloric acid 

solutions with and without the inhibitor for 1, 5, 10, 24, and 48 h immersion time at different 

temperatures. 

In addition, elevated temperatures can cause the displacement of inhibitors from metal 

surfaces. This high thermal energy weakens the bonding between the PMT molecules and 

the metal surface resulting in some molecules detaching thus decreasing the effective coating 

region. The desorption process that occurs during this stage can render the inhibitor 

ineffective [170–174]. Significant corrosion protection is provided by “PMT” especially at 

higher temperature conditions although its inhibition efficiency is reduced under these 

conditions. Nevertheless, one should bear in mind that the effectiveness of the inhibitor 

depends on temperature variation. In order to better optimize PTM as a corrosion inhibitor, 

further researches and studies are required to reveal the exact reasons why inhibiting 

efficiency reduces with increasing temperatures. Such knowledge could be used in designing 

measures that would increase the efficacy and stability of “PMT” inhibition especially in 

high temperatures [175–179]. Exploring other parameters including dosage, time exposure, 

and potential interactions between PMT and other additives would provide deeper insights 

into its corrosion inhibition mechanism. However, in conclusion, the decrease in inhibitor 

efficiency from 97.1% at 303 K to 91.6% at 333 K when “PMT” concentration was increased 

to 0.5 mM suggests that the inhibitor response may be temperature-dependent. Such findings 

underscore the importance of considering temperature variations when developing corrosion 
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inhibition strategies, highlighting the need for future studies to enhance “PMT” protection 

efficiency across different temperature ranges. 

 
Figure 4. Comparison of corrosion rate and inhibition efficiency in hydrochloric acid solution 

with and without the inhibitor during a 5-hour immersion at various temperature. 

The obtained results show that the inhibition efficiency of PMT decreases significantly 

with increase in temperature from 303 K to 333 K. For instance, at 303 K, 0.5 mM of the 

inhibitor exhibited a notable inhibition efficiency from corrosion. Nevertheless, PMT 

efficiency lowered down to 91.6% with temperature increasing up to 333 K, thus showing 

reduced inhibition effect at elevated temperatures. This apparent decrease in inhibition 

efficiency at increased temperatures could be due to several factors. Firstly, the presence of 

thermal stress in PMT particles and corrosive solutions become more severe due to increase 

in the temperature. Increased thermal excitation may prevent the deposition of an inhibitor 

film resulting in a reduced barrier thickness. Moreover, high temperature would heighten 

reactivity of the destructive environment and would boost up corrosion rate despite presence 

of the inhibitor. Higher temperature could even lead to desorption of the inhibitor molecules 

from the surface of metal. The high thermal energy might lower the degree of interaction 

between PMT molecules and the coated metal surface leading to a few of these molecules 

falling away and lowering the area covered by the protective coat. The inhibition mechanism 

is affected by this adsorption process and contributes to the reduction in inhibition 

effectiveness [186–189]. Nevertheless, it should be stated that at elevated temperatures 

inhibition efficacy tends to decline, and this does not cancel out protection by PMT. 

Although reduced, it still offers adequate resistance to a high temperature corrosion. 

Nevertheless, it is very important to take into account the weak sides of the inhibitor’s 

operation in various temperatures. Therefore, more investigations would be necessary to find 
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out the reasons for decreasing inhibition efficiency with increasing temperatures of the PMT. 

Such knowledge could be useful in formulating new PMT measures aimed at boosting its 

performance against severe corrosion conditions at elevated temperatures. Moreover, other 

factors like inhibitor amount, soaking period and compatibility effect among other additives 

could be explored to improve on the efficiency of the PMT at high temperatures [190–192]. 

Overall, it can be seen that with regard to the PMT at the same concentration, the efficiency 

decreased from 97.1% to 91.6% between 303 K and 333 K indicating the temperature 

sensitivity. The finding points out that in order for appropriate corrosion inhibition strategy, 

one must take into account temperature effect and calls for more studies in this field. 

3.2. Adsorption isotherm analysis 

For evaluation of PMT adsorption process in the corrosion inhibition of mild steel in HCl 

solutions, we utilized Frumkin, Temkin and Langmuir isotherms as presented in Table 1. 

These isotherms provide valuable insights into the adsorption behavior and the effectiveness 

of the inhibitors. Among these, the Langmuir isotherm stood out as the most suitable for 

describing the adsorption process of PMT on the mild steel surface. This isotherm, 

commonly used for studying inhibitor adsorption on metal surfaces, assumes monolayer 

adsorption on a homogeneous surface [193–198]. Table 1 and Figure 5 demonstrate a good 

fit of the PMT inhibitor’s adsorption isotherm to the Langmuir model. The Langmuir 

adsorption isotherm, represented by Equation (11), establishes the relationship between 

surface coverage and inhibitor concentration. The equilibrium constant of adsorption (Kads) 

derived from the Langmuir isotherm indicates the extent of adsorption inhibitor on the mild 

steel surface. The results reveal significant adsorption of PMT on the mild steel surface, as 

evidenced by its relatively high Kads value. Additionally, the negative value of the standard 

free energy of adsorption  0

adsG , calculated using Equation (12), suggests a spontaneous 

and favorable adsorption process, indicating the formation of a stable inhibitor layer on the 

mild steel surface. 

Table 1. The adsorption isotherms for PMT on mild steel surface. 

Parameter 

The adsorption isotherms 

Langmuir Frumkin Temkin 

Temperature Temperature 

303 K 313 K 323 K 333 K 303 K 303 K 

R-Square 0.995 0.093 0.087 0.071 0.486 0.857 

Slope 0.937 0.933 0.929 0.937 0.902 0.378 

Intercept 0.071 0.992 0.993 0.995 0.018 0.204 
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We also compared the adsorption behaviour of PMT using the Frumkin and Temkin 

isotherms in addition to the Langmuir isotherm. Nevertheless, the Langmuir isotherm 

showed more adequacy with a larger R2 value, and fitted closer to the experiment values. 

Such things as electrostatic forces, unshared electron pair interactions, and p-electron 

interactions play a part in this understanding. Nitrogen atoms, heterocycle rings and 

pyridinic rings are present in PMT. These act as donor ligands for PMT, and thus improve 

the bioavailability of the drug as well [199–201]. Summing up, the Langmuir adsorption 

isotherm adequately characterizes PMT’s adsorption behavior as a corrosion inhibitor for 

mild steel in HCl solutions. This model gives useful information, the intensity (Kads), and 

strength  0

adsG . Adsorption mechanism comprises of the addition of unshared electron 

pairs, electrostatics interaction and the π interaction with the mild steel surface, leading to 

its corrosion inhibition function by PMT. 

  
1inh

ads
θ

C
K C


   (11) 

  0

ads adsln 55.5G RT K    (12) 

where Kads is an adsorption constant whereas  is the surface coverage. 

The intercept, R-square, and slope values from linear regression analysis of Langmuir 

adsorption isotherm data provide important information about the fit of the experimental 

data to the Langmuir model. An R-square value close to 1 (in this case, 0.995) indicates a 

good fit of the data with the model, indicating that the Langmuir isotherm accurately 

describes the adsorption behavior of PMT on the mild steel surface. The slope value 

(0.937±0.033) reflects the relationship between surface coverage (θ) and the concentration 

of the inhibitor (C), while the intercept value (0.071±0.016) has a less significant meaning 

in the context of adsorption analysis [202–204]. 

The thermodynamic parameters obtained from weight loss measurements at various 

concentrations are determined. The negative value of 0

adsG  suggests a spontaneous 

adsorption process, leading to the formation of a stable layer of inhibitor molecules on the 

mild steel surface. The strength of the adsorption process is typically evaluated based on the 
0

adsG  value, with values less than –20 kJ·mol–1 indicating Van der Waals forces and more 

negative values exceeding –20 kJ·mol–1 suggests chemisorption. Unpaired electrons from 

the heteroatoms of the inhibitor molecule transfer to the d-orbitals of iron atoms on the metal 

surface, forming coordination bonds. Our findings indicate the occurrence of both 

physisorption and chemisorption mechanisms, as demonstrated by the 0

adsG  values ranging 

from –39.11 kJ. Chemisorbed molecules are expected to provide enhanced protection by 

reducing reactivity at the bonded sites on the metal surface. It is important to note that 

distinguishing between chemisorption and physisorption based solely on 0

adsG  values is 
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challenging, as there is some overlap between the two mechanisms, and physical adsorption 

is believed to precede chemical adsorption [205–207]. 

 
Figure 5. Langmuir adsorption isotherm for the tested inhibitor. 

3.3. DFT calculations and molecular interactions 

Quantum chemical calculations offer valuable insights into the structural properties of the 

PMT molecule and various thermodynamic parameters. The Gaussian [80–81] records at 

the B3LYP/6-311G(d,p) level are utilized for determining these parameters based on the 

structural characteristics of PMT. An example of the information obtained from this analysis 

is shown in Figure 6. 

  

 

Optimized Structure HOMO LUMO 

Figure 6. Optimized structure, HOMO, and LUMO of PMT. 

The quantum chemical analysis carried out in this investigation provides significant 

insights into the structural characteristics and thermodynamic parameters of PMT molecules, 

elucidating their potential as corrosion inhibitors. Figure 6, shows the findings that offer an 

insight into the characteristics of PMT and how it interacts with the metal surface [208–

211]. In order to identify the sites for adsorption, we utilize Mulliken charges, which indicate 

that nitrogen atoms possess negative charges, constructing them suitable sites for adsorption. 
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This behavior occurs because of the interactions between these atoms and the metal surface 

as represented in Figure 6. The functional groups located in the PMT molecules assist form 

a connection with the metal surface, which improves the process of adsorption. Additionally 

examining the occupied orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 

provides insights, into the PMT molecules ability to donate or accept electrons. The HOMO 

signifies positions in the molecule that easily give away electrons whereas the LUMO 

indicates its capacity to accept electrons. In the instance of PMT the HOMO emphasizes that 

sulfur and nitrogen atoms are more inclined to transfer electrons to the substrate indicating 

their potential for creating a coating on the metal surface. On the hand when we look at the 

LUMO analysis it suggests that the nitrogen and carbon atoms in PMT tend to be more 

reactive and have a probability of accepting electrons. This in turn plays a role in the process 

of inhibition [16, 24]. The quantum chemical parameters listed in Table 2 including EHOMO, 

ELUMO, ∆E, electronegativity (χ) softness (σ) hardness (η) and the number of transferred 

electrons (∆N) offer understanding of how PMT inhibits behaviors. EHOMO values indicate a 

capacity, for electron donation, which is a desirable characteristic, for an effective corrosion 

inhibitor. On the hand lower ELUMO values imply ability to accept electrons. The low ∆E 

values and high σ values indicate that PMT has corrosion inhibition properties effectively 

protecting steel from corrosion. The ∆N values, which represent the number of electrons 

transferred further confirm PMTs ability to assist electron exchange thereby contributing to 

its action [81, 213–215]. In general this analysis of quantum chemistry offers understanding 

of the characteristics and thermodynamic factors related to PMT molecules. It assists explain 

why they act as inhibitors for corrosion and aligns, with what we observe in experiments. 

By examining how the molecule interacts with the metal surface and its ability to transfer 

electrons, this study confirms that PMT has potential in reducing corrosion processes [206–

220]. 

Table 2. DFT variables for PMT molecules in the gas phase. 

EHOMO (eV) ELUMO (eV) ∆E (eV) χ (eV) η (eV) σ (eV–1) ∆N (eV) 

–9.204 –1.756 –7.448 5.480 3.722 0.2686 0.204 

Mulliken charges are commonly used to identify favorable adsorption sites for 

inhibitors. For PMT, nitrogen atoms exhibit negative charges and are preferred adsorption 

locations due to their donor-acceptor interactions with metal surfaces, as depicted in 

Figure 7. The functional groups within the PMT molecules facilitate complexation between 

the adsorbate and surface coordination bonds. Additionally, the examination of the highest 

occupied molecular orbital (HOMO) of the PMT component reveals the sites for electron 

donation within the molecules. The HOMO suggests that the nitrogen atoms can transfer 

electrons to the metallic substrate, while the lowest unoccupied molecular orbital (LUMO) 

represents the molecule’s capacity to accept electrons [221–226]. Figure 7 illustrates that 

the most reactive LUMO locations in PMT are the nitrogen, sulfur, and carbon atoms. 
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Figure 7. The atomic charges of PMT. 

3.4. The inhibition mechanism of PMT as a corrosion inhibitor 

Chemical adsorption, also known as chemisorption, involves strong interactions between the 

inhibitor molecules and the metal surface. The high inhibitory efficiency of PMT is attributed 

to the presence of pyridine rings, nitrogen atoms, and heterocyclic ring. Because these atoms 

have unpaired electron pairs, they can serve as coordinating sites to help metal ions form 

coordination bonds [227–231]. The unpaired electrons from the inhibitor’s nitrogen atoms 

and the d-orbitals of the iron atoms on the mild steel surface might interact during the 

adsorption process. Conversely, lower Van der Waals forces or electrostatic contacts 

between the inhibitor molecules and the metal surface cause physical adsorption, also 

referred to as physisorption. These weaker connections with the mild steel surface are made 

possible by the functional groups present in the PMT molecules. These interactions help 

PMT to absorb onto the metal surface and increase corrosion prevention efficiency. One of 

the elements involved in the damping process is the formation of coordination bonds, 

between the molecules in PMT and the iron orbitals, on the surface of steel. The empty 

energy levels of the iron ions, on the metal surface can interact with the electron pairs from 

the nitrogen atoms, in the inhibitor molecule. By improving the attachment of the inhibitor 

to the surface of the metal the coordination bond protections steel against corrosion in 

environments by forming a protective layer. In general both chemical and physical processes 

contribute to the adsorption of PMT on the surface of steel (Figure 8). Chemisorption plays 

a role by establishing coordination bonds between the inhibitor molecules and iron atoms 

while physisorption involves interactions that assistance, in the adsorption process. The 

effective ability of PMT to prevent corrosion in HCl solutions for steel occurs due to the 

actions of these processes [232–240]. 

 
Figure 8. Assumed inhibitive mechanism. 
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4. Conclusion 

The primary objective of the study was to examine how PMT behaves as a corrosion 

inhibitor, in HCl solutions for steel and understand its inhibition mechanism. To summarize 

the main focus was on investigating PMTs adsorption behavior and its role, in preventing 

corrosion. Quantum chemical analysis provided insights, into the structure and 

thermodynamic properties of the inhibitor molecule shedding light on its potential, as a 

corrosion inhibitor. According to the adsorption isotherm study it was determined that the 

Langmuir isotherm provides the model, for explaining the adsorption process of PMT on the 

surface of mild steel. The Langmuir isotherm provides crucial characteristics, such as the 

equilibrium constant of adsorption (Kads), to define the adsorption process. The Langmuir 

isotherm is a tool for understanding the adsorption process as it provides information, such, 

as the equilibrium constant of adsorption (Kads). It does this by assuming monolayer 

adsorption and a homogenous surface. It achieves this by assuming that adsorption occurs at 

the monolayer adsorption and a homogenous surface. The corrosion inhibitors ability to 

prevent corrosion was improved because it had a high Kads value indicating that it strongly 

attached to the surface of the mild steel. Furthermore the metal surface showed the formation 

of an inhibitor layer due to a spontaneous and beneficial adsorption process as suggested by 

the values of the standard free energy of adsorption  0

adsG . Both chemical and physical 

processes were involved in the mechanism of PMT adsorption. The interaction between the 

d-orbitals of iron ions on the surface of steel is coordinated with the inhibitor molecule. This 

coordination promotes chemisorption through the presence of nitrogen atoms, heterocyclic 

rings and pyridine rings. The strong bond between the inhibitor and the metal surface 

enhanced its ability to prevent corrosion. Furthermore, the reduction in electrostatic contacts 

and the contribution of Van der Waals forces played a role in assisting physisorption. As a 

result, it enhanced the adsorption process to an extent. The effectiveness of PMT in 

preventing corrosion processes was determined by the combined effects of bonding and 

physical adsorption mechanisms. The inhibitor effectively reduces reactivity at the bonded 

sites and prevents corrosive attacks, resulting in the formation of a stable and protective layer 

on the surface of the metal. Through the analysis of quantum chemistry and adsorption 

isotherm studies we were able to gain an understanding of how PMT acts as an inhibitor for 

steel corrosion in acidic conditions. This suggests that PMT could potentially be used as a 

corrosion inhibitor in environments. The findings of the study provide insights into the 

development and improvement of inhibitors to prevent metal corrosion. Additionally, they 

contribute to the advancement of techniques for corrosion inhibition. The exploration of 

PMT, as a substance that prevents corrosion opens up possibilities for research in the field 

of corrosion science and materials protection. 
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