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Abstract 

A benzoylamine derivative of new class, namely 4-pyrrol-1-yl-N-(2,5-dimethyl-pyrrol-1-

yl)benzoylamine (PDPB), has been successfully synthesized and characterized by spectroscopic 

techniques (Fourier-transform infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance 

(NMR)) and CHN analysis. PDPB acts as a new corrosion inhibitor for mild steel in HCl 

environment. The inhibition efficiency was determined by mass loss measurements and by 

scanning electron microscopy (SEM). The inhibitive performance of PDPB on mild steel in 1 M 

hydrochloric acid environment was studied as a function of PDPB concentration, immersion 

time, and temperature. The inhibition efficiency increases with an increase in inhibitor 

concentration and decreases with an increase in immersion time and temperature. The PDPB 

molecules are adsorbed on the surface of mild steel is a mixed mode involving physical 

adsorption and chemical adsorption. SEM analysis was conducted to investigate the persistency 

of the layer of PDPB molecules.  Moreover, the relationship between the inhibitive performance 

and the chemical structure of the tested inhibitor molecules was investigated by density 

functional theory (DFT) calculations. All the experimental findings and theoretical calculations 

are in good agreement. 
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Introduction 

Mild steel has been used in petroleum, food, chemical, and engineering industries as a 

common structural material [1–3]. However, mild steel is adversely affected by acid 

solutions in industrial cleaning, acid de-scaling, and acidization of oil wells [4–6], which 

can cause major economic losses and safety risks. One of the most inexpensive and effective 

approaches was the use of inhibitors to avoid or mitigate the significant harm to mild steel 
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in acid environments [7–10]. It is widely accepted that organic molecules containing 

heteroatoms (sulfur, oxygen, and nitrogen) are efficient organic inhibitors in corrosive 

environments, and their molecular structure contains heterocyclic rings or polar sites. The 

explanation is that iron on the solid-liquid surface forms coordination bonds with the 

inhibitor molecules [11–13] and this blocks the activation sites on the mild steel surface, 

preventing corrosion of mild steel in corrosive environments [14–17]. The weight  loss 

method [18, 19] is a traditional technique to determine the inhibitive behavior. The purpose 

of this investigation is to study the inhibitive performance of a newly synthesized 

benzoylamine, namely 4-pyrrol-1-yl-N-(2,5-dimethyl-pyrrol-1-yl)benzoylamine (PDPB) 

(Figure 1), on mild steel coupon in 1 M hydrochloric acid environment. The reason why this 

compound is chosen is that, first, it has a number of adsorption centers, including 

heteroatoms such as nitrogen and oxygen, in addition to heterocyclic and aromatic rings. 

Secondly, pyrrole demonstrated a significant inhibitive performance for mild steel in 1 M 

HCl environment at 303 K. Third, this inhibitor (PDPB) can indeed be synthesized easily in 

an excellent yield. The investigation was conducted utilizing gravimetrical techniques and 

scanning electron microscopy (SEM). The correlation between the inhibitive performance 

of various inhibitor concentrations, immersion time and solution temperature is discussed. 

All experimental data are compared with the density functional theory (DFT) results to 

explain the process of successful coordination of the inhibitor molecules with the d-orbital 

of iron atoms on mild steel surface. 

 
Figure 1. The chemical structure of the newly synthesized corrosion inhibitor. 

2. Experimental Section 

2.1. Synthesis of PDPB 

The investigated benzoylamine derivative was synthesized and the chemical scheme of the 

reaction of  4-pyrrol-1-yl benzohydrazide is shown in Figure 2. Two solutions of 4-(1H-

pyrrol-1-yl)benzohydrazide (0.005 mol) in ethyl alcohol (20 mL) and hexane-2,5-dione 

(0.010 mol) in glacial acetic acid (2 mL) were mixed and heated for 5 h. The concentrated 

residue was poured into ice, filtered, washed with distilled water, and then dried. The dry 

filtrate was recrystallized from ethyl alcohol. Yield 70%, m.p. 230–231°C. FT-IR (cm–1): 

3291 (amide group), 3071 (C–H aromatic), 2954 (C–H aliphatic group), 1658 (carbonyl 

group), 1563 (C=N group). 1H NMR (DMSO-d6, ppm): 8.01 (d, 1H, C–H aromatic), 7.94 

(d, 1H, C–H aromatic), 7.73 (s, 1H, C–H pyrrole), 6.40 (s, 2H, C–H pyrrole), 5.69 (s, 2H, 
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C–H pyrrole), 2.13 (s, 6H, C–H aliphatic). 13C NMR (DMSO-d6, ppm) 166.6 (C=O), 143.7 

(C aromatic), 129.4 (C aromatic), 128.1 (C aromatic), 125.9 (C pyrrole), 120.1 (C pyrrole), 

111.3 (C pyrrole), 106.1 (C pyrrole), 10.8 (C methyl). CHN elemental analysis (calc/found): 

C, 73.10/73.81; H, 6.13/5.99; N,15.04/14.79. 

2.2. Weight loss measurements 

Gravimetric measurements were conducted in 1 M hydrochloric acid environment in the 

presence of various concentrations of PDPB. The immersion periods were 1, 5, 10, 24, and 

48 h and the solution temperature was 303 K. Coupons of mild on steel having dimensions 

4.0 × 2.5 × 0.5 cm were used for the gravimetric measurements. The chemical composition 

of mild steel utilized is as follows (weight percentage): 0.210 carbon; 0.050 manganese; 

0.380 silicon; 0.010 aluminum; 0.030 sulfur; 0.090 phosphorus; iron balance. After 

degreasing with acetone and benzene, mild steel specimens were precisely weighed. After 

the immersion periods, the mild steel coupons were removed, cleaned, and accurately 

weighed again. Distilled water was utilized to dilute HCl to the 1 M concentration. In order 

to estimate the inhibition efficiency at various temperatures, the measurements were 

performed at various inhibitor concentrations (100, 200, 300, 400, and 500 ppm) at various 

temperatures (303, 313, 323, and 333 K) for 5 h corroding time [20–22]. For each 

experiment, triplicate tests were performed and the average values are reported. The 

corrosion rate of mild steel was calculated using equation (1): 

 
R

87.6W
C

atp
=  (1) 

where W is the weight loss in the absence and in the presence of the synthesized inhibitor 

(mg), a is the coupon area (cm2), t is the immersion time and ρ is the specific density of the 

tested mild steel coupons. 

The inhibition efficiency (IE%) was estimated from equation (2) whereas the surface 

coverage (θ) was determined from equation (3): 
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where CR is the corrosion rate of mild steel in the absence of PDPB and CRi is the corrosion 

rate of mild steel in the presence of PDPB. 

2.3. SEM analysis 

The images of mild steel surface after immersion for 5 h corrosion time in 1 M environment 

at 303 K in the absence and in the presence of PDPB was obtained with a scanning electron 

microscope, model TM1000 Hitachi Tabletop Microscope. 
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2.4. Density Functional Theory (DFT) 

The geometrical structure of PDPB molecules and quantum chemical calculations were 

conducted utilizing the Gaussian-03 software package for DFT calculations and B3LYP 

function with the basis set 6–31G (d, p) [23–25]. The quantum chemical parameters, such 

as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital 

(LUMO), energy gap (ΔE), electron affinity (A), ionization potential (I), dipole moment, 

softness (σ), and hardness (η) were calculated [26–29]. 

3. Results and Discussion 

3.1. Synthesis 

The molecular structure of the synthesized inhibitor was confirmed by FT–IR and NMR 

techniques. The reaction synthesis steps are shown in Figure 2. 

 
a: Hydrolysis with hydrazine hydrate.  b: Hexane-2,5-dione 

Figure 2. Scheme of inhibitor synthesis. 

3.2. Gravimetric measurements – concentration effects 

The inhibition effect of PDPB as a corrosion inhibitor for mild steel in 1 M HCl environment 

at 303 K was primarily studied by the mass loss technique. The corrosion rate (CR) and 

inhibition efficiency (IE%) values were determined and demonstrated in Figure 3. It is 

obvious from Figure 3 that the corrosion rate decreased significantly with an increase in the 

PDPB concentration compared to zero PDPB concentration, which was attributed to the 

strong adsorption of PDPB molecules on the surface of mild steel and formation of a 

protective film that covers the mild steel surface and prevents and/or controls the impact of 

the corrosive solution [30]. It is obvious that inhibitive activity increased with increasing 

PDPB concentration, and the highest value of the inhibition efficiency was found to be 

95.8% at the optimum PDPB concentration of 500 ppm, suggesting that PDPB successfully 

inhibited the mild steel corrosion in the HCl solution. These findings may be attributed to 

the chemical structure of PDPB molecules which have pyrrole and benzene rings in addition 

to a carbonyl group and hetero atoms which have free electrons that they can share with the 

d-orbitals of iron atoms on the surface of mild steel and form coordination bonds. 
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Figure 3. The effect of immersion time on the corrosion rate and inhibition efficiency  

of mild steel in 1 M HCl containing various concentrations of PDPB in 1 M HCl at 303 K.  

3.3. Gravimetric measurements – immersion time effect 

The effect of exposure time on the inhibitive efficacy of 100–500 ppm PDPB on mild steel 

in 1 M HCl environment at 303 K is demonstrated in Figure 3. It is obvious that during the 

first 1 h, the inhibition efficiency increased with the exposure period for PDPB inhibitor, 

whereas in the second periods of 5 and 10 h, the inhibition efficiency increased sharply. 

These findings may be attributed to the formation and growth of the adsorbed layer of PDPB 

molecules on the mild steel surface. After 10 h, the inhibitive efficacy reduced with 

prolongation of the exposure period, which is attributed to the dissolution of adsorbed 

protective PDPB molecules [31]. In addition, the inhibitive efficacy of PDPB molecules was 

still above 80% after the 48 h exposure period, suggesting that PDPB was a long-range 

efficient inhibitor for mild steel in 1 M HCl environment. 

3.4. Gravimetric measurements – temperature effect 

The effect of temperature on the corrosion rate and inhibition efficiency was investigated in 

1 M hydrochloric acid solution at different temperatures (303, 313, 323 and 333 K) without 

and with addition of various concentrations of PDPB (Figure 4). The inhibition efficiency 

was reduced with increasing temperature from 303 to 333 K. These findings may correlate 

with the dissolution of adsorbed PDPB molecules on the mild steel surface. These results 

confirm that the inhibitive process occurs by adsorption of PDPB molecules on the mild steel 

surface, and on the other hand, increasing the temperature increases the corrosion rate and 

decreases the inhibition efficiency due to desorption of inhibitor molecules from the mild 

steel surface as shown in Figure 4.  
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Figure 4. The effect of temperature on the corrosion rate and inhibition efficiency of mild 

steel in 1 M HCl containing various concentrations of PDPB on mild steel in 1 M HCl.  

Weight loss tests were conducted at various temperatures (303–333 K) to evaluate the 

thermodynamical parameters. The rate of corrosion and inhibitive efficacy were determined 

at various temperatures as demonstrated in Figure 4. It is obvious that the corrosion rate 

increases with increasing temperature and the inhibitive efficacy decreases with increasing 

temperature, which is attributed to the chemical adsorption mechanism of PDPB molecules 

on the surface of mild steel. This effect demonstrated the interactions of PDPE molecules 

and the metal surface [32]. Arrhenius equation (4) was used to evaluated the activation 

energy (Ea) [33], 

 
a–

log log( )
2.303

R
E

C A
RT

= +  (4) 

where A is the Arrhenius parameter. 

The value of (Ea) was determined from the slope of the Arrhenius plot as demonstrated 

in Figure 5. The value of (Ea) is 8.51 kJ·mol–1. The adsorption of PDPE molecules was 

correlated to the chemical adsorption mechanism. Based on the current results and the value 

of activation energy (Ea), the proposed mechanism is chemical absorption. The value of the 

activation energy determines and establishes that the type of interference between the 

corrosion inhibitor molecules and the metal surface and suggests a chemisorption 

mechanism [34].  
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Figure 5. Log CR versus 1/T for mild steel in 1 M HCl environment. 

3.5. Morphology study 

Scanning electron micrographs of mild steel specimens in the corrosive environment in the 

absence and presence of 500 ppm PDPB corrosion inhibitor are shown in Figure 6. It is clear 

that the surface of the tested specimens was corroded in the absence of PDPB (Figure 6a), 

whereas in the presence of 500 ppm PDPB (Figure 6b), the surface of mild steel was found 

to be smooth. These results suggest that PDPB molecules form a film on the specimen 

surface and impede and/or control the corrosion effect of the HCl solution.  

 

Figure 6. Surface morphology of mild steel after being corroded in 1 M HCl solution at 303 K 

in the absence (a) and in the presence of 500 ppm PDPB (b). 
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3.6. Mechanism of inhibition 

The adsorption of PDPB molecules on the mild steel-solution interface is responsible for the 

effect of this compound on the impedance of the corrosion of mild steel in 1 M HCl. Physical 

adsorption or chemical adsorption or both are the primary forms of interaction between the 

PDPB molecules (as organic inhibitor) and the surface of mild steel. The alloy nature, the 

chemical composition of inhibitor molecules, the electrolyte form, the environment 

temperature, and the specimen morphology are the main parameters that affect the inhibitor's 

adsorption [35]. Generally, the inhibitive performance depends on the electronic density 

(which is the measure of the electron being present probability) at a functional site of the 

inhibitor molecule. The thermodynamic parameters show that the adsorption of the 

investigated inhibitor molecules on the specimen surface in 1 M HCl environment includes 

chemical and physical adsorptions together [36]. Chemisorption (chemical adsorption) of 

PDPB molecules on mild steel surface was attributed to the interactions of unshared electron 

pairs of heteroatoms (nitrogen and oxygen) and -electrons of azomethine groups in addition 

to pyrrole and benzene rings with the unoccupied d-orbital of iron atoms on the surface of 

mild steel [37]. These interactions produce an insoluble and stable layer through covalent 

coordination bonds [38]. The enhanced inhibitive behavior of PDPB molecules is associated 

with the electron donor effect of a benzene ring-connected amide group which increases the 

electron density in the aromatic (pyrrole and benzene) rings as illustrated in Figure 7. The 

increased electron delocalization density in the molecule may cause corrosion inhibition. 

The adsorption of PDPB molecules will give more stability due to the involvement of -

electrons of benzene and pyrrole rings [39]. 

 
Figure 7. The suggested mechanism of inhibition of PDPB molecules. 

3.7. DFT calculations 

Figure 8 demonstrates the correlation between the inhibitory activity and the optimized 

molecular structure. The Highest Occupied Molecular Orbital (HOMO), lowest unoccupied 

molecular orbital (LUMO), energy gap ΔE, and dipole moment are the most significant 

parameters for determination of the linkage between the inhibitor and metal surface. Based 

on the principle of molecular orbital frontiers, EHOMO refers to the ability of a molecule to 
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send electrons to the appropriate electron receptors, and thus, when the EHOMO value is high, 

it appears that the molecule contributes more electrons in a moderate-vacancy d-orbital of 

iron atoms on the surface of mild steel. LUMO, therefore, refers to the electron acceptability 

of the molecule, and when the evaluated ELUMO value is lower, a molecule has a higher 

capacity for accepting electrons, so the inhibitor has a higher inhibitory activity when its ΔE 

value is lower, as lower energy is required to eliminate the electron from the previously 

occupied molecule [40,41]. 

 
  

Optimized molecular 

structure 

HOMO LUMO 

Figure 8. Optimized molecular structure and frontier molecule orbital of PDPB molecule. 

The ionization potential (I) and the electron affinity (A) values may be determined [42] 

based on equations (5,6): 

 I=–EHOMO (5) 

 A=–ELUMO (6) 

Furthermore, the softness (σ), hardness (ρ) and electronegativity (χ) of the PDPB 

molecule are calculated according to equations (7–9): 

 
1

σ
ρ

=  (7) 

 
HOMO LUMO

ρ –
–
2

E E
=  (8) 

 
HOMO LUMO

χ –
2

E E
=

+
 (9) 

The DFT calculations are presented in Table 1. It is apparent that the PDPB molecule has a 

high value of EHOMO and low value of ELUMO which is in good agreement with above 

hypothesis and means that the tested inhibitor has significant inhibitive efficacy. 

Furthermore, the PDPB molecule exhibits a considerable μ value. Even so, the association 

between μ and inhibition effectiveness remains controversial, e.g., several researchers 

proposed improved inhibition efficacy with increasing μ [43–45], although others indicated 

that inhibitor molecules with a lower μ showed better inhibitory activity [46]. The 
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electronegativity value, in general, reflects the chemical reactivity, and a higher value shows 

improved inhibitive efficiency. Moreover, where the value of hardness is lower, as per the 

hard–soft acid basis (HSAB) principle, an inhibitor still has higher inhibitive effectiveness 

[47]. Inspection of Table 1 also reveals that the PDPB molecule has high electronegativity 

and low hardness, values suggesting high inhibitive efficacy, which is compatible with 

weight loss and SEM techniques. 

Table 1. DFT theoretical parameters of PDPB molecules. 

Parameter PDPB 

EHOMO (eV) −11.132 

ELUMO (eV) –2.573 

ΔE (eV) 8.559 

μ (D) 3.7824 

I (eV) 11.132 

A (eV) 2.573 

χ (eV) 6.852 

ρ (eV) 4.279 

σ [(eV)−1] 0.2336 

Conclusion 

Weight loss techniques and scanning electron microscopy were applied to study the 

inhibitive behavior of a novel synthesized corrosion inhibitor derived from benzoylamine, 

namely 4-pyrrol-1-yl-N-(2,5-dimethyl-pyrrol-1-yl)benzoylamine (PDPB) for mild steel in 

1 M HCl environment. Experimental findings demonstrated that PDPB is an excellent 

corrosion inhibitor for mild steel surface in corrosive solution with a highest inhibitive 

efficacy of 95.8% at 500 ppm. The inhibitive efficacy increases with increasing PDPB 

concentration and decreases with rising temperature. The observations from SEM and DFT 

were well-conformed with those from gravimetric measurements. 
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