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Abstract 

This review provides an outline of related literatures in which scientists and researchers used 

different types and procedure of corrosion inhibitors to reduce corrosion that takes place in 

various equipment made of alloys or metals. Different chemical inhibitors were used to reduce 

the rate of corrosion in various alloys. The inhibition rates ranged between 30-80% in acidic 

environments with different molar concentrations. The second part of this article, the laser was 

used as a tool to inhibit the corrosion of some alloys and under various conditions without used 

chemical inhibitors as an auxiliary agent. The effect of the laser pulses on the material leads to 

an increase in its hardness and thus its corrosion resistance. We found that the rate of inhibition 

reaches about 80%. 
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Introduction 

Corrosion is defined as the damage of metals and alloys through chemical or electrochemical 

interaction with their surrounding environment [1]. In the classification of corrosion 

reactions according to the nature of corrosive environments, they are divided into wet and 

dry corrosion [2, 3]. Depending on the morphology of metal damage, the corrosion can be 

classified into general corrosion, pitting corrosion, crevice corrosion, intergranular 

corrosion, environmentally induced fracture, de-alloying; galvanic, and erosion-corrosion 

[4, 5]. There are certain ways to protect the metal from corrosion such as coating, alloying, 

cathodic protection, anodic protection and recently been using the laser for this purpose by 

surface treatment of metal is considered as the way to improve the properties of metals like 

roughness, hardness, the resistance of corrosion, etc. [6, 7]. Corrosion inhibitors are of 

considerable practical importance, as they are extensively employed in reducing metallic 

waste during production and In reducing the risk of material failure, both of which can lead 

to the sudden closure of industrial processes, which in turn leads to additional costs. It is also 

important to use corrosion inhibitors to prevent the dissolution of minerals and reduce acid 

consumption [8, 9]. There are two types of corrosion reactions according to the nature of the 
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corrosive environments: wet and dry corrosion [10]. These types of corrosion can be 

classified into general corrosion; pitting corrosion; crevice corrosion; Inter-granular 

corrosion; environmentally induced fracture; de-alloying; galvanic, and erosion-corrosion; 

this depends on the morphology of metal’s damage [11–13]. Several techniques, such as 

coating, alloying, cathodic protection, anodic protection, and laser treatment are used to 

protect metals from corrosion [14]. The use of laser technology in surface treatment of 

materials represents the main areas in which looks set special features enjoyed by the laser 

beam, which distinguish it from other energy sources and make it more than traditional 

technologies are all (even modern ones) in this type of heat treatments [15–17]. The 

increasing utilization of laser in material processing can be contributed to many unique 

advantages of laser called, high productivity, automation worthiness, non-contact 

processing, removal of finishing operation, decreased processing cost, improved product 

quality, maximum material utilization, and minimum HAZ [18, 19]. The process of laser-

material interaction is considered as a very complex thermos-physical process under the 

interaction between temperature, phase transformation, and stress-strain [20]. The use of 

laser shock peening (LSP) is a new method used as a surface treatment; it is used to reduce 

metal corrosion. LSP is defined as residual mechanical stress that is introduced as deep 

pressure by generating shock waves by laser pulses with a high energy density to the target 

surface [21]. There are methods to reduce metal wear by using modern alloys, thin films, 

and coatings deposited on the surface of the metal and recently laser is used for this purpose 

by surface treatment of metals and is a method for improving mental properties such as 

roughness, hardness, wear resistance, etc. [22]. Herein, we investigate the classification, 

synthesis, and applications of some synthesized inhibitors for the corrosion inhibition of 

metals in corrosive solutions [23–42]. 

Classification of corrosion inhibitors 

Organic Corrosion Inhibitors are an attractive area of research because of their usefulness 

in various industries. The efficiency of the inhibitor depends on the stability of the formed 

chelate, and the inhibitor molecule must have centers capable of forming bonds with the 

metal surface by electron transport. Most organic inhibitors are absorbed onto the metal 

surface by displacing water molecules on the surface and forming a pressurized barrier. The 

availability of non-bonding electrons (a single pair) and p electrons in the inhibitor molecules 

facilitate the transfer of the electron from the inhibitor to the metal. The efficiency of the 

inhibitor depends on the stability of the chelate formed, so it mainly depends on the type and 

nature of the alternatives present in the inhibitor molecule [43].  I.O. Ogunleye et al. in the 

same year 2011 [44] investigated the effect of grapefruit juice in different concentrations on 

the corrosion rate of mild steel in different acidic media (HCl and H2SO4) with the utilization 

of the weight-loss method, this research used grapefruit juice in concentrations from 0% to 

5% weight for each acidic solution and found the corrosion rates for HCl (0.694×10–7 to 

0.378×10–7) g/cm2/sec and for H2SO4 (4.782×10–7 to 1.157×10–7) g/cm2/sec. It’s observed 

that the addition of grapefruit juice reduced the corrosion rate of mild steel, the inhibitor 
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efficiency was measured at grapefruit juice concentration of 5% for HCl and H2SO4 

respectively 94.6%, 75.8% that means grapefruit juice is the better corrosion inhibitor in HCl 

acidic than H2SO4 acid. N.S. Patel et al. [45] in 2013 used corrosion inhibitor from leaves of 

plants to decrease the corrosion rate of mild steel in 0.5 M of H2SO4 by using different 

techniques (weight-loss method and electrochemical polarization) it was showed the extract 

of leaves plants are excellent corrosion inhibitors. The scanning electron microscope shows 

the surface of mild steel has become more resistant to corrosion as a result of a protective 

layer that is formed on the surface due to the adsorption of active molecules. A. Kadhim 

examined the anti-corrosion activity of mild steel corrosion in hydrochloric acid (1 M) media 

caused by the Schiff base 3-[(5-phenyl-1,3,4-thiadiazol-2-yl)imino]-2-oxoindoline. Weight-

loss measurements and scanning electron microscopy were performed during the 

investigation. The measurements showed that the inhibition efficiency of the chemical 

compound increased with its increasing concentration. This inhibitor functioned through 

adsorption following the Langmuir isotherm and the electronic properties obtained through 

the Austin Model 1. The semi-empirical method was found to be correlated with the 

inhibitor’s experimental efficiency by the nonlinear regression method. The organic 

compound was synthesized effectively through a reaction between indoline-2,3-dione and 

5-amino-2-phenyl-1,3,4-thiadiazol [46]. Al-Amery and Kadihum have invented a coating 

composition for inhibiting corrosion named 1,5-dimethyl-4-((2-methyl benzylidene)amino)-

2-phenyl-1H-pyrazole-3(2H)-one (Figure 1), on mild steel metal surface. This inhibitor was 

synthesized with an excellent yield by refluxing ο-tolualdehyde, 4-aminoantipyrine, and a 

polar solvent. This new inhibitor can reduce the corrosion rate on metal surfaces [47]. 

Figure 2 shows the corrosion rate per year as a function of the time with organic inhibitor. 

 

Figure 1. 1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one. 



 Int. J. Corros. Scale Inhib., 2021, 10, no. 1, 54–67 57 

    

 

 
Figure 2. Corrosion rate per year as a function of time period with organic inhibitor for 

different acid molarity. 

The laser is characterized by providing large amounts of energy in the confined areas 

of the material to reach the required reaction, and this energy will be absorbed by a nearby 

metal surface and the surface chemistry will be treated [48]. The laser surface processing 

can be classified according to the change in surface material synthesis into two kinds: 

First thermal process: this process doesn’t cause any change in the composition of 

material surface like laser cutting, welding, tempering, annealing, melting, and 

transformation hardening. And the second kind is the thermo-chemical process: in this 

process, the metal will have a change in metallic structure by adding another material so the 

surface composition changes, like laser cladding, alloying. Furthermore, the advantages of 

these surface treatments include flexibility and the possibility of treating small areas, leaving 

the other parts unaffected [49]. Laser shock peening represents a modern method used in 

surface treatment can be defined as a mechanical process based on the introduction of 

residual pressure of deep pressure by shock waves that are generated by the disposal of laser 

pulses with a high energy density on the surface target [50, 51]. In 2004, Ocana et al. 

presented a summary providing various experimental results obtained from the latest LSP 

experiments conducted by the authors along with the conclusions. They rated LSP as a 

profitable way to extend the life of fatigue in critical components. In particular, an initial 

display of the frequency power multiplier was obtained [52]. The laser shock peening 

technique (Figure 3) is a good technique to modify the surface properties and improve the 

corrosion resistance thus the corrosion rate decreased from 7.7210 mm/y before LSP 

treatment to 1.0716 mm/y after LSP treatment at the optimum thickness of the confining 

layer (4 mm). Q-switching Nd:YAG laser is an efficient corrosion inhibitor for an St-37 alloy 

on immersion in 1 M HCl, the maximum inhibitor efficiency is 85.59%. Polarization curve 

results show that shifting occurs in the potential to more positive region after applying LSP, 
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while the corrosion current is reduced from 958.02 μA/cm2 to 138.17 μA/cm2 after using 

Nd:Yag laser as a corrosion inhibitor [53]. 

 
Figure 3. Laser shock peening technique. 

Nd:YAG lasers to the remaining residual stresses are stimulated in a highly deformed 

material such as aluminum. Although there are reasonable doubts about their ability to cause 

these tensions overextended depths or in less deformed materials (i.e. stainless steel). 

Janez Grum et al. [54] investigated improving corrosion resistance by LSP for 

aluminum alloys (AlMgSiPb and AlSi1MgMn) in the same year (2010). Nd:YAG laser used 

(1064 nm) with a pulse duration of 10ns, pulse repetition rate of 10 Hz, and the pulse density 

was changed. From the polarization tests after increasing the laser pulse density it has been 

found the potential increased with the increasing of laser pulse density, for AlSi1MgMn the 

increase occurred in the pitting potential equal to 120 mV and for AlMgSiPb equal to 

267 mV so bigger corrosion resistance was obtained with increasing laser pulse density. In 

2012, Subhasisa Nath [55] studied laser surface alloying of aluminum with WC+CO+NiCr 

for improved wear resistance. Laser surface alloying of aluminum with WC+CO+NiCr (in 

the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG 

laser (at a beam diameter of 0.003 m). The output power used was ranging from 3 to 3.5 kW 

and 0.012 m/s to 0.04 m/s scan speed by simultaneous feeding of precursor powder (at a 
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flow rate of 1×10−5 kg/s) and using He shroud at a gas flow rate of 3×10−6 m3/s. Laser surface 

alloying leads to the development of fine-grained aluminum with the dispersion of WC, 

W2C, Al4C3, Al9CO2, Al3Ni, Cr23C6, and CO6W6C. Figure 4 represents the effect of laser 

shock on sample surface before and after treatment. 

 

 
Figure 4. The microstructures of metal’s surface before laser treatment and right after laser 

treatment. 

Chemical compounds Added in small quantities to reduce the wear rate. The presence 

of these compounds delays the corrosion process and keeps its rate to a minimum, thus 

preventing economic losses caused by mineral corrosion. Chemicals that can act as corrosion 

inhibitors may be inorganic or organic. 

M. Sivaraju and K. Kannan, 2010 [44] studied the effect of Acalypha Indica L. 

alcoholic extract (AIAE) as inhibitor material on mild steel that corrodes in 1 N phosphoric 

acid by two techniques mass loss and polarization techniques at different temperatures. They 

found when increasing the concentration of plant extract, the inhibition efficiency increased, 

also this study showed direct proportionality between the corrosion rate and temperature and 

reverse proportionality between the concentration of inhibitor and corrosion rate. At 303 K 

in 1 N phosphoric acid at 5 mg of the inhibitor, the maximum inhibition efficiency from 

mass loss studies was equal to 95.21% and from polarization measurement it was equal to 

90.38%. In 2011 Shylesha B.S. et al. [56] used 2-methyl-3-aniline as a corrosion inhibitor 

for mild steel in different corrosive media (1 M HCl and 0.5 M H2SO4) by using mass loss 

and electrochemical studies. The concentration of inhibitor was changed (0, 0.01, 0.05, 0.10, 

0.15, 0.20 M) then the inhibition efficiencies were calculated. The maximum IE was 

obtained with higher concentration from mass loss measurements, IE=81.7% in H2SO4 and 

IE=84.2% in HCl, and from polarization studies IE=81.9% in H2SO4 and IE=82.1% in HCl. 

An increase in concentrations led to an increase in inhibition efficiency. 
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Makanjuola Oki et al. [57] in 2011 used tannin, tannin:H3PO4, and H3PO4 as inhibitor 

materials for mild steel in hydrochloric acid with the use of weight loss measurements that 

indicated the efficiency of inhibitor was 72% for tannin at a maximum concentration of 

140 ppm and with the same concentration of tannin:H3PO4 in ratio 1:1 the inhibition 

efficiency was 61%, while the efficiency of H3PO4 was 55%. At inhibitor concentrations of 

140 ppm for 6 hour exposure in 1 M HCl solution, the corrosion rate for tannin was 

2 mA/cm2, 2.4 mA/cm2 for tannin/H3PO4, H3PO4-inhibited 2.6 mA/cm2, and 6 mA/cm2 for 

uninhibited sample  

Sutiana Junaedi et al. [58] used 1,5-dimethy1-4-(2-methylbenzylidene)amino-2-

phenyl-1H-pyrazol-3(2H)-one (DMPO) with different concentrations (0 to 0.5×10–3 M) to 

protect mild steel that was immersed in 1 M HCl and the impacting of DMPO into corrosion, 

from polarization measurement at a higher value of inhibitor concentration, it was found the 

maximum was IE=87.7% with icorr=39.6 μA cm–2 and Ecorr=–479 mV/sec. 

In 2014 S.I. Durowaye et al. [69] studied the effect of Methyl red (2,4-dimethylamino-

2´-carboxylazobenzene) with different concentrations (1,2,3,4,5 and 6%)as an inhibitor on 

the corrosion rate of mild steel in 1 M H2SO4. The results showed a decrease in corrosion 

rate as the concentration of the organic compound increased, with the maximum IE=87.3% 

and with the lowest CR=0.352 mpy. In 2015, AL-Amery, Kadhim, et al. [60] used the power 

of creatinine as an inhibitor. Metals in 1 M corrosive acid solution (hydrochloric acid) were 

investigated utilizing a weight loss technique. Results demonstrated that the inhibition 

occurs through adsorption of the creatinine molecules on the surface of the metal and the 

efficiencies were improved with an increment in creatinine concentration and diminished at 

higher temperature degrees. SEM was done for the metal surface to examine it. The highest 

occupied molecular orbital energy, lowest unoccupied molecular orbital energy, and dipole 

moment were theoretically calculated utilizing Density Function theory.  

Anti-corrosion coatings are generally used to prevent average wear and increase the 

longevity of mild steel. A wide range of organic adsorption inhibitors is currently applied in 

the area of expensive corrosion. Pairs of electrons and negative ions are transferred from the 

inhibitors to the metal orbitals d, which leads to the formation of coordination complexes 

with a specific geometry, such as planar, quadrilateral, or octahedral [61]. Thus, the barrier 

particles improve the mild steel’s resistance to corrosive solutions by absorbing it onto the 

metal surface and forming a barrier that prevents the active sites of mild steel. Adsorption 

on slight steel is affected by the nature of mild steel, the type of electrolyte, and the molecular 

structure of the inhibitor [62]. 

Nanoparticles coating 

The use of nano-coatings is one of the most effective methods for preventing and postponing 

corrosion. Nano-coatings have a higher thermal expansion coefficient, higher hardness and 

toughness, and more resistance to corrosion, abrasion, and erosion. The effect of TiO2 nano-

particle coating on the construction of corrosion-resistant blades of centrifugal pumps. Thin 

layers of titanium dioxide nano-particles were created in two separate steps on GG25 gray 
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cast iron samples with specific dimensions and characteristics using the sol-gel process and 

immersion method. After each step, heat treatment was performed to stabilize the nano-

coating. The thickness of applied coatings was measured by scanning electron microscopy 

(SEM). To measure the corrosion rate, the samples were exposed to petrochemical 

wastewater. The corrosion rate was measured by the atomic absorption spectrometry 

method. The experiments were carried out in a factorial arrangement in a completely 

randomized design with three temperature levels of 40, 50, and 60°C and four thicknesses. 

The results showed that the coating of titanium dioxide nano-particles increased the 

corrosion resistance of GG25 gray cast iron. With an increase in temperature from 40 to 

60°C, the corrosion rate of all samples increased by 46.6%. Coated samples with thicknesses 

of 440–550, 840–970, and 1030–1330 nm reduced the corrosion rates by 39.1%, 67.8% and 

73.6%, respectively [63]. 

In some circumstances, the nano-coating may not act as protective surfaces. Nano 

coating is an effective physical barrier in high-temperature applications, as its high grain 

density provides fast diffusion paths for passive ions and better adhesion to the protective 

oxide layer on the substrate surface [64]. However, the higher boundary portion of the grain 

provides more anode locations, making the surface more vulnerable to corrosion attack. 

Moreover, the nano-coating forms a defensive structure by including them in vacant 

positions, dislocation, and grain- interpolation limits. These features have the advantage of 

forming a more effective passivation layer, as the inert ions spread will be faster. On the 

other hand, the agglomeration of these nanomaterials may occur due to the accelerated 

proliferation of aggressive ions, causing non-uniform surfaces. It increases the ability to form 

active sites, thereby reducing wear resistance as shown in Figure 5 [65]. 

 
 Figure 5. SEM graphs of corrosion samples (left: without nanocoating) & with nanocoating. 

Such a discrepancy urges the need to study the corrosion behavior of each nanoparticle, 

taking into account all the surrounding conditions involved [66]. 
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Zinc oxide nanopowder was studied as an agent to achieve anti-corrosion properties of 

a coating. The research project discusses the corrosion behavior of epoxy zinc oxide in 

various media by measuring the wear rate. Mild carbon steel was used as a substrate for 

epoxy and zinc oxide coating. The corrosion behavior of mild steel has been examined in 

various modes, freshwater, NaCl solution, HCl solution, and NaOH solution. The immersion 

test was done and studied for 60 days, with daily and weekly weight and immersion [67]. 

Conclusions 

All types of inhibitors which were used lead to reduced the rate of corrosion, but in varying 

degrees. When using the organic compound, we observed an improvement in corrosion 

resistance of up to 80 percent. Laser treatment leads to a reduction in the corrosion rate by a 

lot of times after applying laser shock processing than without laser treatment. When using 

a nanocoating layer the corrosion rate was reduced more than upon laser treatment and an 

organic compound.  
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