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Abstract  

Literature data concerning the protection of steels in acid solutions at elevated temperatures 

(t ≤ 200°C) by organic nitrogen-containing heterocyclic compounds (NHCs) and formulations 

based on them are generalized. It is noted that individual NHCs are rarely efficient in steel 

protection in acid solutions at t > 100°C. However, composite inhibitors based on some of these 

compounds allows their protective effect to be expanded to t = 200°C in certain cases. Data on 

the protection of various steels by composite inhibitors of this kind is discussed. The most 

outstanding results in the protection of low-carbon and chromium–nickel steels in high-

temperature acid solutions are provided by formulations based on triazole derivatives, which 

effectively inhibit corrosion in mineral (HCl, H2SO4, H3PO4) and organic (acetic, formic, citric) 

acids. Problems related to the mechanism of the inhibitory effect of triazoles are discussed. It is 

shown that the possibility of providing steel protection at these high temperatures is due to the 

unique mechanism of the inhibitory action of triazoles that are chemisorbed on the metal surface 

and form a monomolecular layer strongly bound to the surface. Additional physical or chemical 

polymolecular adsorption of inhibitor molecules occurs on top of that layer, which significantly 

improves its protective properties. Generalization of data on the inhibitory protection of steels 

in high-temperature acid solutions with unsaturated organic compounds and NHCs, as well as 

an analysis of the mechanism of their action made it possible to formulate modern approaches 

to the creation of high-temperature inhibitors for acid solutions. The bibliography includes 137 

sources.  
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I. Introduction 

In the final part of our review we consider the most significant results achieved over the past 

decades in the field of inhibitory protection of steels in high-temperature acid solutions 

(t  80°C) and related to studies of various azoles as corrosion inhibitors of steels in acid 

media. The preceding part of the review [1] generalizes the literature data on the protection 

of steels in acid solutions by unsaturated organic compounds (UCs) and formulations based 
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on them at temperatures t ≤ 250°C. It was noted that UCs themselves, i.e., acetylenic 

compounds (ACs), unsaturated aldehydes, ketones and azomethines, are rarely efficient for 

steel protection in HCl solutions at t > 100°C. The creation of a mixed corrosion inhibitors 

(CIs) based on some of them sometimes makes it possible to expand the range of their 

protective action to t = 250°C. 

Data on the protection of various steels by such CIs was discussed. It was noted that 

such CIs are most suitable for corrosive high-temperature HCl solutions. Issues related to 

the mechanism of the inhibitory effect of UCs were discussed. It was shown that the 

possibility of steel protection at these high t is a consequence of the inhibition mechanism 

of UCs that results from their ability to be chemisorbed on a metal surface and undergo deep 

chemical transformations to form a protective polymer film. This often leads to the formation 

of a protective polymer film. The factors that limit the use of formulations containing UCs 

were analyzed, including their instability in hot corrosive media over time and 

polymerization in the acid bulk that removes the inhibitor from the corrosive environment. 

Moreover, the UCs themselves and the additives used in combination with them are very 

toxic compounds. 

In this review, nitrogen-containing heterocyclic organic compounds (NHCs) mainly 

represented by azoles will be considered as high-temperature CIs (HCIs). These compounds 

are, to a considerable extent, devoid of the drawbacks inherent in UCs in the protection of 

steels in mineral acid solutions. Not only the effect of NHCs on the corrosion process but 

also the possibility of improving their protective effect by creating mixed CIs on their basis 

will be considered. The analysis of modern concepts concerning the mechanism of metal 

protection by NHCs is important for the development of a scientific approach to the use of 

these compounds and creation of formulations based thereon. 

Reference information on the possibility of using individual NHCs to protect steels 

from degradation in acid solutions in the oil and gas industry is given in recent reviews [2–

4], but this information is limited to t = 110°C. So it does not fully meet the needs of modern 

production and does not reliably reflect the capabilities of this group of CIs which, in some 

cases, can efficiently slow down the corrosion of metals at t  200°C.  

The general issues of steel protection in acid solutions by NHCs were considered in 

review articles [5, 6]. Some specific features of the mechanism of their inhibitory action are 

also discussed there. In this review, priority is given to the generalization and analysis of 

issues related to the use of these CIs against the high-temperature corrosion of steels. 

The group of HCIs that protect chromium–nickel steels in phosphoric acid solutions is 

narrow and they have a specific mechanism of action. It is represented by inorganic 

compounds that will also be briefly covered in our review. 

In the first part of this review [7], we discussed the methodological and technical 

specifics of studying the corrosion of steels and their electrochemical behavior in acid 

solutions at elevated temperatures, both in the absence and in the presence of CIs. The 

chemical composition of steels discussed in this review is given in Table 1. 
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Table 1. Chemical composition of steels. 

Steel brand Content of elements, mass% 

Steel 3 
0.14–0.22 C; 0.15–0.33 Si; 0.40–0.65 Mn; up to 0.3 Cr; up to 0.30 Ni; up to 

0.008 N; up to 0.30 Cu; up to 0.05 S; up to 0.04 P; up to 0.08 As; remainder Fe 

Steel 5 0.28–0.37 C; up to 0.3 Si; 0.5–0.8 Mn; up to 0.05 S; up to 0.04 P; remainder Fe 

Steel 10 
0.07–0.14 C; 0.17–0.37 Si; 0.35–0.65 Mn; up to 0.15 Cr; up to 0.25 Ni; up to 

0.25 Cu; up to 0.04 S; up to 0.035 P; up to 0.08 As; remainder Fe 

Steel 20 
0.17–0.24 С; 0.17–0.37 Si; 0.35–0.65 Mn; up to 0.25 Cr; up to 0.30 Ni; up to 

0.30 Cu; up to 0.04 S; up to 0.035 P; up to 0.08 As; remainder Fe 

Steel 45 
0.42–0.50 С; 0.17–0.37 Si; 0.5–0.8 Mn; up to 0.25 Cr; up to 0.25 Ni; up to 0.25 Cu; 

up to 0.04 S; up to 0.035 P; up to 0,08 As; remainder Fe 

Steel D 
0.41–0.48 С; 0.17–0.37 Si; 0.65–0.90 Mn; up to 0.045 S; 0.045 P; 0.25 Cu; 

remainder Fe 

Mild steel [18–

21, 39, 40] 
0.14 C; 0.35 Mn; 0.17 Si; 0.025 S; 0.03 P; remainder Fe 

Mild steel [86] 0.13 C; 0.39 Mn; 0.18 Si; 0.04 S; 0.40 P; 0,025 Cu; remainder Fe 

Carbon steel 

[76] 
0.18 С; 0.25 Si; 0.42 Mn; 0.18 Cr; 0.22 Ni; 0.21 Cu; 0.02 S; 0.02 P; remainder Fe 

Cold rolled 

steel [77] 
0.07 C; 0.3 Mn; 0.022 P; 0.010 S; 0.01 Si; 0.030 Al; remainder Fe 

N80 
0.34–0.38 С; 0.20–0.35 Si; 1.45–1.7 Mn; up to 0.02 P; up to 0.015 S; up to 0.15 Cr; 

0.11–0.16 V; remainder Fe 

P110  
0.26–0.395 С; 0.17–0.37 Si; 0.40–0.70 Mn; up to 0.020 P; up to 0.010 S; 0.80 –

1.10 Cr; up to 0.20 Ni; up to 0.20 Cu; 0.15–0.25 Mo; up to 0.08 V; remainder Fe 

X80 
0.064 С; 0.025 Si; 1.56 Mn; 0.013 P; 0.004 S; 0.01 Cu; 0.021 Cr; 0.056 Nb; 0.005 V; 

0.025 Ti; 0.0006 B; remainder Fe 

Kh18N9T 0.11 C; 9.66 Ni; 18.66 Cr; 0.57 Ti; remainder Fe  

1Kh18N9T  17.57 Cr; 9.16 Ni; 71.92 Fe; 0.83 Ti; 0.52 Si 

08Kh18N10T  
0.08 C; 0.8 Si; up to 2 Mn; 9–11 Ni; up to 0.02 S; up to 0.035 P; 17–19 Cr; up to 

0.3 Cu; up to 0.7 Ti; remainder Fe 

12Kh18N10T 
up to 0.12 C; up to 0.8 Si; up to 2 Mn; 9–11 Ni; up to 0.02 S; up to 0.035 P;  

17–19 Cr; up to 0.3 Cu; up to 0.5 Ti; remainder Fe 

Kh17N13М2Т 
up to 0.1 С; up to 0.8 Si; up to 2 Mn; up to 0.035 P; up to 0.02 S; 16–18 Cr;  

12–14 Ni; up to 0.3 Cu; 2–3 Mo; up to 0.7 Ti; remainder Fe 

Kh17N13М3Т 
up to 0.1 С; up to 0.8 Si; up to 2.0 Mn; up to 0.035 P; up to 0.02 S; 16–18 Cr; 12–14 

Ni; up to 0.3 Cu; 3–4 Mo; up to 0.7 Ti; remainder Fe 



 Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1194–1236 1197 

    

 

II. Protection of steels in acid solutions by nitrogen-containing heterocyclic organic 

compounds 

The first studies of NHCs as HCIs of steels in HCl solutions were carried out in the 1960s 

and dealt with pyridine derivatives [8]. It was shown that in the protection of steel 5 in 16% 

HCl (300 atm) by addition of 0.5% catapin A (p-alkylbenzylpyridinium chloride 

[H3C(CH2)nCH2C6H4CH2NC5H5]Cl, where n = 8–10), with an increase in the acid 

temperature the corrosion inhibition coefficient passes through a maximum at 65°C 

(Figure 1). Under the same conditions, a mixture of polyalkylpyridines (I-1-A inhibitor, 1%) 

is characterized by a higher temperature of the maximum inhibitor efficiency toward steel 5. 

In individual form, both CIs turned out to be poorly efficient in steel protection at t > 100°C. 

However, their mixtures with urotropine satisfactorily inhibit metal corrosion at t  110°C, 

though urotropine itself is inefficient under these conditions. The strongest protective effect 

is provided by the three-component formulation 0.4% I-1-A + 0.8% urotropine + 1% Na2SO4 

that protects steel 5 up to t = 130°C, but no detailed information about its properties is 

reported in the article. A drawback of catapin A as a corrosion inhibitor noted in the article 

is that it undergoes decomposition due to hydrolysis in the acid solution. 

 
Figure 1. Steel corrosion inhibition factors for steel 5 in 16% HCl (300 atm) with addition of 

1% urotropine (1), 0.5% catapin A (2), 0.5% catapin A + 0.5% urotropine (3), 1% I-1-А (4), 

0.4% I-1-А + 0.8% urotropine (5). 

Various pyridine derivatives protect steel 10 in 15% HCl (25–100°C) where the 

corrosion rate in the background solution is k0 = 5.7–2860 g/(m2·h) [9]. In the presence of 

0.5% catapin K (p-alkylbenzylpyridinium chloride [H3C(CH2)nCH2C6H4CH2NC5H5]Cl, 

where n = 4–6), the corrosion rate of steel is k  5.1 g/(m2·h). This parameter is worse in the 

case of the I-1-A inhibitor, k  6.3 g/(m2·h). It is interesting that 0.5% catapin K effectively 
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slows down the corrosion of steel 10 (k0 = 59–230 g/(m2·h)) in 5–25% H2SO4 (80°C) to give 

k  3.0 g/(m2·h). In contrast, I-1-A weakly inhibits corrosion in this environment. In 5% HCl 

(100°C), addition of 0.5% catapin K slows down the corrosion of chromium–nickel steels 

Kh17N13M3T (k0 = 100 g/(m2·h)) and Kh17N13M2T (k0 = 114 g/(m2·h)) to k=12 and 

3.0 g/(m2·h), respectively [10]. The corrosion of chromium–nickel steels is poorly inhibited 

by combinations of catapin K with urotropine. For example, for steel Kh17N13M2T in the 

presence of a formulation of 0.5% catapin K + 0.5% urotropine, k = 4.8 g/(m2·h). Works 

[9, 10] do not report data on the protection of steels at t > 100°C, but catapin K and I-1-A 

decompose in acid solution in 5 days [9]. In hot acid solutions, these CIs will be less stable, 

so they cannot be efficiently used in high-temperature media. Other things being equal, 

pyridine derivatives inhibit corrosion more weakly than UCs with similar structures. In fact, 

in the case of steel 45 corrosion in 14% HCl at 100°C (k0 = 2020 g/(m2·h)), the following 

compound (1%)  

 

provides an inhibition coefficient of  = 77, whereas an equal amount of 

 

gives  = 326 [11]. 

Along with pyridine derivatives, quinoline derivatives with bulky unsaturated 

substituents can be used to slow down the corrosion of low carbon steels in hot HCl [12–

14]. For example, in the case of steel 3 corrosion in 14% HCl at 95°C (k0 = 2240 g/(m2·h)), 

the most efficient protection provided by  

 

in the presence of which (1%) k = 2.5 g/(m2·h). 

The patent [15] provides data on the protection of steel P110 in 15% HCl (107°C) by 

formulations based on the berberine alkaloid: 
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In fact, in the presence of a formulation of 0.7% crude berberine extract, 0.5% 

urotropine, and 0.36% H1I-1 24B™ CI enhancer (manufactured by Halliburton Energy 

Services, Inc., Houston, Texas), the k value is 37 g/(m2·h), whereas in the presence of 0.5% 

urotropine and 0.36% of the CI enhancer, k = 187 g/(m2·h). 

NHC derivatives containing quaternized nitrogen are mainly used to protect steels in 

acids. Quaternary ammonium salts (QAS) are close to this group of compounds. However, 

their use in high-temperature environments, even in inhibitor formulations, does not give 

good results. In fact, in the presence of 3% HOSP-10 (an industrial CI), which is a mixture 

of QAS, a foaming agent and a synergist, steel D in 12% HCl (30 atm) at t = 100, 140, and 

160°C gives k = 128, 705 and 1190 g/(m2·h), which corresponds to the degree of protection 

Z = 95.4, 81.4 and 74.8%, respectively [16]. Thus, the presence of an NHC fragment in the 

structure of the organic cation should make it possible to protect steels by such a cation under 

high-temperature corrosion conditions. 

More detailed information on the use of six-membered NHCs for the protection of steels 

in high-temperature acids in individual form or in formulations based on them is not 

reported. This indirectly indicates that they are not promising as HCIs, though pyridine and 

quinoline derivatives are often added to HCI formulations based on UCs, as we discussed 

earlier [1]. Moreover, pyridine and quinoline derivatives are toxic, which strongly restricts 

their practical application.  

Five-membered NHCs can serve as an alternative to six-membered NHCs for the 

protection of steels in hot acid solutions. In the earliest study, benzimidazole derivatives 

were studied as HCIs [17]. In 14% HCl (100°C) for steel 3 (k0 = 2080 g/(m2·h)) in the 

presence of the most efficient derivative (1%), 

, 

k = 11 g/(m2·h). Later, M.A. Quraishi studied derivatives of 1,2,4-triazole [18, 19], 1-oxa-

3,4-diazole [20], and thiazole [21] as CIs in hot HCl solutions. 
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In 15% HCl (105°C) for mild steel (k0 = 11150 g/(m2·h) in the presence of 5000 ppm 

N-cinnamylidene-3-propyl-5-mercapto-1,2,4-triazole-4-amine 

, 

k = 49 g/(m2·h), which is higher than with an equivalent (by weight) addition of the well-

known acetylenic HCI, viz., propargyl alcohol (PA) (k = 33 g/(m2·h)) [18]. The following 

compound provides poorer steel protection:  

. 

In boiling 15% HCl (105°C), addition of 5000 ppm of this compound decreases the k 

of mild steel (k0 = 12800 g/(m2·h)) to 488 g/(m2·h) [19].  

The most efficient 1-oxa-3,4-diazole derivative, namely, 2-undecyl-5-mercapto-1-oxa-

3,4-diazole (5000 ppm), in 15% HCl provides Z = 72% for cold rolled mild steel and 

Z = 92.6–94.5% for steel N80, depending on the duration of corrosion tests [20]. 

 

Structurally similar compounds, 2-heptadecenyl-5-mercapto-1-oxa-3,4-diazole and 2-

decenyl-5-mercapto-1-oxa-3,4-diazole containing unsaturated hydrocarbon radicals, are 

inferior to it in the protective action. Substituted thiazole (2000 ppm) 

 

in 15% HCl (105°C) on mild steel (k0 = 11150 g/(m2·h)) reduces k to 202 g/(m2·h), which is 

significantly lower than that provided by 2000 ppm PA (k = 8490 g/(m2·h)) [21]. The 

CAHMT inhibitor (the composition is not disclosed) [22] also deserves attention. It contains 

an azomethine bond conjugated with a C=C group, a heterocycle containing three nitrogen 

atoms, and a sulfide group. The CI developers position it as “environmentally friendly”. At 

Cin up to 5000 ppm, it reduces the k of N80 steel in 15% HCl (105°C) to 102 g/(m2·h) 
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(Z = 98.4–99.2%), but parallel studies show that the same amount of PA slows down the 

corrosion better and allows one to reach a minimum rate of about 40 g/(m2·h). 

Information on the protection of steels by derivatives of five-membered NHCs 

considered above is limited to t = 105°C, which does not allow us to fully understand the 

feasibility of their application at higher temperatures. All of these compounds, except for 2-

undecyl-5-mercapto-1-oxa-3,4-diazole, are modified by substituents comprising unsaturated 

carbon–carbon bonds. This feature of their structure indicates that the high efficiency of CIs 

in inhibiting the corrosion of steels in hot HCl solutions will be largely due to the formation 

of a polymer film on the steel surface upon deep chemical conversion of these compounds 

on the steel surface [23, 24]. It should be understood that the presence of unsaturated bonds 

in their structure will give them the main disadvantage inherent in UCs, i.e., low stability in 

hot acid solutions that eliminates the CI from the corrosive environment. Moreover, it is 

known that UCs are efficient only in HCl solutions but not in other mineral acids (H2SO4, 

H3PO4, and HClO4). All these factors can significantly limit the practical application of these 

compounds as HCIs. 

From our point of view, NHC derivatives containing substituents without unsaturated 

carbon–carbon bonds, which should increase their chemical and thermal stability, are more 

promising as HCIs. Triazoles should be used as a basis for creating such HCIs. It is well 

known [25] that triazole rings can be chemically and thermally stable. An important property 

of triazoles is their ability to form strong complex compounds with metal cations, including 

iron [26–31]. This property indirectly indicates the ability of compounds containing a 

triazole moiety to chemically bind to steel surface through it, which should favor the most 

durable retention of such a CI on the metal. It is interesting that interaction of substituted 

triazoles with metal cations often results in polynuclear polymeric complex compounds with 

various structures in which they act as bidentate bridging ligands that bind metal cations, 

including Fe(II) [26–28]. If such structures are formed from triazole and Fe(II) cations on 

steel and they are strongly bound to its surface, efficient protection of the metal in corrosive 

media can be anticipated. 

Indeed, 1,2,4-triazole derivatives efficiently protect steel in hot acid solutions. For 

example, 5 mM of 4-substituted 1,2,4-triazole (IFKhAN-96) in 2 M HCl (95°C) slows down 

the corrosion of steel 3 (k0 = 1031 g/(m2·h) by a factor of 69 [32]. Under the same conditions, 

an industrially produced QAC, catamine AB (alkylbenzyldimethylammonium chloride 

[CnH2n+1N
+(CH3)2CH2C6H5]Cl–, where n = 10–18), slows down the corrosion only 24-fold. 

The temperature maximum of IFKhAN-96 efficiency is about 80°C, which formally allows 

us to consider it as an HCI. As a disadvantage of this CI, it may be noted that it strongly 

accelerates steel corrosion at t > 80°C compared to lower temperatures. The corrosion of 

steel 3 is significantly hindered by IFKhAN-94, which is a 3-substituted 1,2,4-triazole [33]. 

At its C = 5 mM in 2 M HCl (95°C), k decreases 93-fold, but the temperature maximum of 

its efficiency also lies at temperatures close to 80°C. Along with the corrosion inhibition in 

HCl solutions, IFKhAN-94 efficiently inhibits the corrosion of steel 3 (k0 = 1033 g/(m2·h)) 

in 2 M H2SO4 (95°C), providing an inhibition coefficient of  = 610. In the same 
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environment, 5 mM catamine AB protects steel 3 much worse ( = 63). Unfortunately, these 

CIs do not offer equally high protective effects in H3PO4. In 2 M H3PO4 (95°C) for steel 3 

(k0 = 519 g/(m2·h)) in the presence of these CIs,  = 2.6 and 3.1, respectively. IFKhAN-93, a 

3-substituted 1,2,4-triazole, is efficient in the protection of steel 3 in hot solutions of HCl 

and H2SO4, but it was studied only up to t = 80°C [34]. 

Along with 1,2,4-triazole derivatives, the protection of steels in hot acid solutions is 

provided by some tetrazole derivatives [35]. For example, IFKhAN-95, a 5-substituted 

tetrazole, inhibits the corrosion of steel 3 111- and 103-fold in 2 M HCl and H2SO4 (95°C), 

respectively. It is interesting that lower molecular weight tetrazoles such as 5-

phenyltetrazole and 5-(2-dimethylaminoethyl)tetrazole provide   4.6 even at t  80°C. In 

both acids in the selected t range of –95°C, the maximum of CI efficiency was not 

reached, indicating that it lies no lower than at 95°C. This is typical of HCIs. 

Table 2. Corrosion rates (k, g/(m2h)) and corrosion inhibition coefficients () of steel 20 in 2 M HCl with 

addition of an IFKhAN-92 + urotropine mixture at various temperatures. 

Inhibitor 

Test duration 

0.5 h 1.0 h 2.0 h 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

0С 

10 mM IFKhAN-92 + 10 mМ urotropine 0.14 28.6 0.11 22.7 0.08 23.8 

20С 

10 mM IFKhAN-92 + 10 mМ urotropine 0.24 40.8 0.14 63.6 0.10 56.0 

40С 

10 mM IFKhAN-92 + 10 mМ urotropine 0.34 110 0.27 119 0.25 113 

60С 

10 mM IFKhAN-92 + 10 mМ urotropine 0.98 93.1 0.91 92.9 0.86 96.5 

80С 

10 mM IFKhAN-92 + 10 mМ urotropine 2.86 140 2.40 165 1.66 224 

100С 

10 mM IFKhAN-92 + 10 mМ urotropine 10.5 148 8.1 188 7.1 197 

10 mM IFKhAN-92 + 20 mМ urotropine 10.3 150 8.2 185 8.0 175 

120C 

5 mM IFKhAN-92 + 10 mМ urotropine 19.5 255 16.0 259 17.8 – 

10 mM IFKhAN-92 + 10 mМ urotropine 19.5 255 15.9 261 17.1 – 

20 mM IFKhAN-92 + 20 mМ urotropine 16.0 312 12.6 329 17.0 – 
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Inhibitor 

Test duration 

0.5 h 1.0 h 2.0 h 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

140C 

10 mM IFKhAN-92 + 10 mМ urotropine 298 27.0 211 – 144 – 

20 mM IFKhAN-92 + 20 mМ urotropine 130 62.0 101 – 109 – 

20 mM IFKhAN-92 + 100 mМ urotropine 49.6 163 65.0 – 68.9 – 

160C 

20 mM IFKhAN-92 + 100 mМ urotropine 248 50 284 – 393 – 

The most promising results in the protection of steels in hot acid solutions are shown 

by IFKhAN-92, a 3-substituted 1,2,4-triazole. IFKhAN-92 itself efficiently inhibits the 

corrosion of steel 20 in 2 M HCl at t  100°C (Figure 2), thus significantly surpassing 

catamine AB [36]. From a practical point of view, formulations of IFKHAN-92 with 

urotropine that slow down the corrosion of steel at t  160°C (Table 2) are important. 

Formulations of IFKhAN-92 with urotropine inhibit the corrosion of steel 20 in HCl 

solutions in a wide range of HCl concentrations, CHCl = 2–6 M (Table 3). At the same time, 

urotropine itself has little effect on the corrosion in hot HCl solutions. In the absence of a 

CI, the corrosion rate of the samples decreases with exposure due to consumption of the acid 

in the reaction with iron. In contrast, it often increases in inhibited solutions. However, even 

at 160°C the k values obtained in 0.5- and 2-hour tests differ only 1.6-fold. 

Table 3. Corrosion rates (k, g/(m2·h)) and corrosion inhibition coefficients () of steel 20 in 4 and 6 M HCl 

with addition of an IFKhAN-92 + urotropine mixture at various temperatures. 

Inhibitor Acid 

Test duration 

0.5 h 1.0 h 2.0 h 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

100С 

– 
4 М 3380 – 3100 – 2720 – 

6 М 4970 – 4610 – 4020 – 

10 mM IFKhAN-92 + 

10 mМ urotropine 

4 М 12.1 279 8.7 356 17.0 160 

6 М 21.3 233 20.0 231 30.1 134 

20 mM IFKhAN-92 + 

20 mМ urotropine 

4 М – – – – 16.8 162 

6 М – – – – 30.0 134 
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Inhibitor Acid 

Test duration 

0.5 h 1.0 h 2.0 h 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

10 mM IFKhAN-92 + 

100 mМ urotropine 

4 М 12.7 266 8.3 373 13.3 205 

6 М 20.6 241 14.0 329 14.5 277 

120С 

– 
4 М 6630 – – – – – 

6 М 9340 – – – – – 

10 mM IFKhAN-92 + 

100 mМ urotropine 

4 М 22.9 290 25.6 – 29.9 – 

6 М 43.7 214 51.5 – 60.4 – 

140С 

– 4 М 12000 – – – – – 

20 mM IFKhAN-92 + 

100 mМ urotropine 
4 М 129 93.0 146 – 166 – 

A unique feature of formulations based on IFKhAN-92 is the ability to slow down the 

corrosion of steel in H2SO4 solutions at t  200°C [37]. IFKhAN-92 at C = 20 mM 

significantly inhibits the corrosion of steel 20 up to t = 140°C, whereas catamine AB does so 

only up to 100°C. Binary formulations of IFKhAN-92 with KI or KBr protect steel up to 

t  200°C (Table 4). An increase in the duration of corrosion tests does not lead to a 

significant acceleration of steel 20 corrosion, both in the presence of IFKhAN-92 itself and 

with binary mixtures. Though the protective effects of the IFKhAN-92 mixture with KBr are 

lower than with KI, this mixture is more promising for practice since it does not contain 

expensive KI. The high efficiency of the mixture of IFKhAN-92 with KI in the protection of 

steel 3 in 2 M H2SO4 (t  140°C) was shown in [38]. 

It is important that no information on such efficient inhibitory protection of steels in 

high-temperature H2SO4 solutions is available in literature. In fact, according to 

M.A. Kuraishi [39], the macrocyclic compound 2,3,9,10-tetramethyl-6,13-dithia-

1,4,5,7,8,11,12,14-octaaza-cyclotetradeca-1,3,6,8,10,13-hexaene (MTAH) deserves 

attention for steel protection in hot H2SO4 solutions. This CI (1000 ppm) provides Z = 88.9% 

in 20% H2SO4 (95±2°C) according to 10 min tests. Z reaches 99.3% only for the formulation 

of 500 ppm MTAH + 0.25% KI [40]. However, it is not clear from the article how an increase 

in the exposure time will affect the protective effect of this CI, which is very important for 

its practical use. 
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Figure 2. Corrosion rates of steel 20 in 2 M HCl. 
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Figure 3. Corrosion rates of steel 20 in 2 M H2SO4. 
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Table 4. Corrosion rates (k, g/(m2h)) and corrosion inhibition coefficients () of steel 20 in 2 M H2SO4 with 

addition of IFKhAN-92 based mixtures at various temperatures. 

Inhibitor 

Test duration 

0.5 h 1.0 h 2.0 h 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

0С 

5 mM IFKhAN-92 + 5 mM KI 0.21 45.2 0.12 95.8 0.09 95.5 

10 mM IFKhAN -92 + 10 mM KBr 0.36 26.4 0.31 37.1 0.20 43.0 

20С 

5 mM IFKhAN-92 + 5 mM KI 0.31 145 0.17 211 0.16 207 

10 mM IFKhAN -92 + 10 mM KBr 0.52 86.5 0.41 87.8 0.31 107 

40С 

5 mM IFKhAN-92 + 5 mM KI 0.49 214 0.20 475 0.19 487 

10 mM IFKhAN -92 + 10 mM KBr 0.88 119 0.70 136 0.58 159 

60С 

5 mM IFKhAN-92 + 5 mM KI 0.66 530 0.39 874 0.30 1050 

10 mM IFKhAN -92 + 10 mM KBr 1.2 292 0.98 348 0.73 432 

80С 

5 mM IFKhAN-92 + 5 mM KI 0.81 1090 0.58 1440 0.53 1400 

10 mM IFKhAN -92 + 10 mM KBr 1.8 491 1.4 596 1.5 495 

100С 

5 mM IFKhAN-92 + 5 mM KI 2.0 1130 1.4 1460 1.1 1580 

10 mM IFKhAN -92 + 10 mM KBr 2.1 1080 1.7 1200 3.3 527 

120C 

5 mM IFKhAN-92 + 5 mM KI 2.6 1220 2.4 1220 1.8 1240 

10 mM IFKhAN -92 + 10 mM KBr 3.7 854 2.1 1400 3.6 622 

140C 

5 mM IFKhAN-92 + 5 mM KI 4.5 898 3.2 – 2.7 – 

10 mM IFKhAN -92 + 10 mM KBr 18.9 214 11.2 – 18.0 – 
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Inhibitor 

Test duration 

0.5 h 1.0 h 2.0 h 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

160C 

5 mM IFKhAN-92 + 5 mM KI 34.7 195 21.5 – 39.7 – 

10 mM IFKhAN-92 + 5 mM KI 19.2 353 20.0 – 37.8 – 

10 mM IFKhAN -92 + 10 mM KBr 52.9 128 54.8 – 162 – 

20 mM IFKhAN -92 + 20 mM KBr 50.1 135 49.1 – 71.0 – 

180C 

10 mM IFKhAN-92 + 5 mM KI 75.5 134 78.4 – 125 – 

20 mM IFKhAN -92 + 20 mM KBr 100 101 133 – 164 – 

200C 

10 mM IFKhAN-92 + 5 mM KI 78.4 195 119 – 160 – 

20 mM IFKhAN -92 + 20 mM KBr 237 64.6 217 – 198 – 

Stainless steels are most difficult to protect in acid solutions. The surfaces of these 

materials are heterogeneous in chemical composition, thus certain difficulties to the 

inhibition of the corrosion process are created. The corrosion of stainless steels in HCl 

solutions is hindered by IFKhAN-92 itself and the IFKhAN-92 + urotropine (molar ratio of 

components 1:1), IFKHAN-92 + KBr (1:9) and IFKHAN-92 + KNCS (4:1) mixtures. These 

formulations inhibit the corrosion of 12Kh18N10T chromium–nickel steel in 2 M HCl and 

2 M H2SO4 (t  100°C) [41, 42]. In solutions of these acids (t  100°C) saturated with H2S, 

binary formulations of IFKhAN-92 significantly reduce corrosion and, especially important, 

hydrogenation of 1Kh18N9T chromium–nickel steel [43, 44]. 

The three-component formulation of IFKhAN-92 + KI + urotropine (1:1:4) [45–47] is 

most efficient in the protection of chromium–nickel steels. This mixture efficiently inhibits 

the corrosion of 08Kh18N10T chromium–nickel steel in 2 M HCl at t up to 160°C, as well 

as in 2 M H2SO4 at t up to 180°C inclusive, and maintains the protective effect for at least 

8 hours [45–47]. Along with chromium–nickel steels, the three-component HCI also 

protects low-carbon steels in the same t ranges in HCl and H2SO4 solutions, which proves 

its versatility. 

The protection of steels in H3PO4 solutions by inhibitors is a complex task [48]. The 

generalized information on the inhibitory protection of steels in this environment presented 

in the review [49] refers exclusively to t ≤ 75°C. The CIs used for the protection of steels in 

this acid are usually studied at temperatures close to room temperature, while the rare 

reported data corresponding to higher temperatures indicate a significant decrease in their 
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protective effect under these conditions [50–59]. In view of this, data on the protection of 

low-carbon steel in H3PO4 solutions by the IFKhAN-92 inhibitor are of interest. It was shown 

[60] that 5 mM IFKhAN-92 weakly protects steel 3 in 2 M H3PO4 at 0–95°C (k0 = 2.4–

518 g/(m2·h)), slowing down corrosion by a factor of 2.4–6.2. Modifying this CI by adding 

0.5 mM KNCS allows the maximum k value in the range of t = 0–95°C to be reduced to 

1.2 g/(m2·h), while addition of 0.5 mM 2-mercaptobenzothiazole, to 1.1 g/(m2·h). By 

themselves, these additives fail to inhibit the corrosion of steel satisfactorily in this 

environment. The temperature maximum of efficiency was not achieved for either of the 

composite CIs, as it is characteristic of HCIs. 

Organic acids are yet another important group of corrosive process fluids. A deception 

exists that they are not capable of exerting significant corrosive effects on steels with which 

they come into contact and that inhibitory protection of metals is not required in these 

environments. It was clearly shown in the first part of our review [7] that an increase in t of 

these media significantly increases their corrosivity towards steels, making them unstable 

under these conditions. It should be noted that considerably fewer CIs are recommended for 

the protection of steels in organic acids than for mineral acid environments. There is but a 

narrow range of individual CIs that protect steels in hot organic acids. According to the data 

of 2-hour testing in 20% HCOOH (103±2°C), the following sulfur-containing compounds 

significantly inhibit the corrosion of mild steel (k0 = 405 g/(m2·h)) at 1000 ppm 

concentration: ditolylthiourea (Z = 99.5%), 2-decenyl-5-mercapto-1-oxa-3,4-diazole 

(Z = 99.6%), 3-heptadecenyl-4-phenyl-5-mercapto-1,2,4-triazole (Z = 99.7%), 3-undecyl-4-

phenyl-5-mercapto-1,2,4-triazole (Z = 99.7%), and 3-decenyl-4-phenyl-5-mercapto-1,2,4-

triazole (Z = 99.8%) [39]. The range of CIs recommended for use in colder organic acids is 

mainly represented by NHCs. Literature sources report that mild steels can be protected in 

acetic acid solutions by aromatic nitrones [61], 3-alkyl-4-amino-5-mercapto-1,2,4-triazole 

(alkyl = methyl, ethyl, propyl and butyl) [62], 4-(N,N-dimethylamino)-benzylidineimino-3-

propyl-5-mercapto-1,2,4-triazole, 4-benzylidineimino-3-propyl-5-mercapto-1,2,4-triazole, 

4-salicylideneimino-3-propyl-5-mercapto-1,2,4-triazole, 4-cinnamalideneimino-3-propyl-

5-mercapto-1,2,4-triazole [63], 3-heptadecenyl-4-phenyl-5-mercapto-1,2,4-triazole, 3-

undecyl-4-phenyl-5-mercapto-1,2,4-triazole, 3-decenyl-4-phenyl-5-mercapto-1,2,4-triazole 

[64], ditetrazole derivatives [65], tetrahydro-1,2,4,5-tetrazine-3-thione derivatives [66], 5-

alkyl-2-amino-1,3,4-thiadiazole (alkyl = methyl, ethyl and propyl) [67], and 1,2-alkane-bis-

(ethyl ammonium bromide) [68]. Some of them also exhibit a protective effect in formic acid 

solutions [62, 63, 66, 67, 69]. In formic acid, the corrosion of steel is inhibited by 

phenylthiourea, tolylthiourea, diphenylthiourea [70], 5-heptadec-8-enyl-4-phenyl-4H-

[1,2,4]triazole-3-thiol, 4-phenyl-5-undecyl-4H-[1,2,4]triazole-3-thiol, 5-dec-9-enyl-4-

phenyl-4H-[1,2,4]triazole-3-thiol [71], 2-heptadecenyl-5-mercapto-1-oxa-3,4-diazole, 2-

undecyl-5-mercapto-1-oxa-3,4-diazole, 2-decenyl-5-mercapto-1-oxa-3,4-diazole [72], 

alkanediyl-α,ω-bis(dimethylcetylammonium bromide) [73], undecenoic acid hydrazide, 1-

undecyl-4-phenylthiosemicarbazide, and 1-decenyl-4-phenylthiosemicarbazide [74]. 

Experimental data on the protection of steels by these compounds in organic acid solutions 
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were mainly obtained in cold environments or in solutions with a maximum temperature of 

60°C, which does not allow one to judge on the prospects for the use of even the most 

efficient of them under high-temperature corrosion conditions. The industrial use of many 

of these CIs will be limited the instability of their protective effect over time and its loss with 

an increase in t. All this indicates that it is impossible to use these compounds in individual 

form for steel protection in H3CCOOH and HCOOH solutions under high-temperature 

corrosion conditions. It might be more promising to create mixed inhibitors based on some 

of these compounds, primarily triazole derivatives, which might expand the temperature 

range of their application. We successfully demonstrated the feasibility of creating an HCI 

for H3CCOOH and HCOOH solutions by combining substituted triazoles with compounds 

of various classes [75] for the protection of steel 20 in these media at temperatures up to 

100°C. IFKhAN-92 alone poorly inhibits steel corrosion in H3CCOOH solutions, but its 

combinations with small amounts (10:1) of hydrophobic sulfur-containing compounds, 

which themselves are also weak CIs in this medium, protect steels very efficiently (Figure 4). 

The best mixture, 5.0 mM IFKHAN-92 + 0.5 mM sodium diethyldithiocarbamate (DDTС), 

protects steel 20 in 2.0–6.0 M H3CCOOH and HCOOH solutions at 20–100°C (Table 5, 

Figure 5). In the presence of this CI, the maximum values of k for steel 20 in H3CCOOH and 

HCOOH solutions at t  100°C are 1.0 and 2.5 g/(m2·h), respectively. In the presence of the 

mixed CI, the k of steel 20 remains low over time even at t = 100°C. In both acids, a 

maximum of the corrosion inhibition coefficient of the CI in the t range studied is not 

achieved. This indirectly indicates that efficient metal protection can be achieved even at 

higher t. 

 
Figure 4. Steel corrosion inhibition factors for steel 20 in 4.0 M H3CCOOH (t = 100°C) by 

sulphur-containing compounds (0.5 mM) and their mixtures with 5.0 mM IFKhAN-92. Test 

duration – 2 h.  
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Table 5. Corrosion rates (k, g/(m2h)) and corrosion inhibition coefficients () of steel 20 in H3CCOOH and 

HCOOH solutions with addition of IFKhAN-92 + DDTC at t = 100C. Test duration – 2 h. 

Inhibitor 

Acid concentration 

2.0 М 4.0 М 6.0 М 

k, g/(m2h)  k, g/(m2h)  k, g/(m2h)  

H3CCOOH 

– 31.7 – 48.1 – 42.9 – 

5.0 mM IFKhAN-92 30.8 1.0 22.8 2.1 12.2 3.5 

0.5 mM DDTC 12.1 2.6 25.8 1.9 24.6 1.7 

5.0 mM IFKhAN-92 + 0.5 

mM DDTC 
0.81 39.1 1.0 48.1 0.89 48.2 

HCOOH 

– 109 – 185 – 226 – 

5.0 mM IFKhAN-92 83.2 1.3 66.4 2.8 18.7 12.1 

0.5 mM DDTC 88.4 1.2 137 1.4 187 1.2 

5.0 mM IFKhAN-92 + 0.5 

mM DDTC 
1.1 99.1 2.5 74.0 1.3 174 

 
Figure 5. Corrosion rates of steel 20 in 4.0 M H3CCOOH and 4.0 M HCOOH. t = 100°C. 
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The inhibition of steel corrosion in citric acid solutions has been studied insufficiently. 

To protect carbon steel in 4% citric acid, it was suggested to use 2-undecyl-N-

carboxymethyl-N-hydroxyethyl imidazolium chloride (0.4%) which, according to 

voltammetry data, decreases the Z value from 89.2 to 84% upon a t increase from 20 to 95°C 

[76]. Weak protection of cold rolled steel in 0.2 M citric acid is provided by an extract of 

bamboo leaves, which is a “green CI” [77]. The effect of this CI strongly decreases with a t 

increase to 50°C. All the more interesting are the results on the protection of low-carbon 

steel in citric acid with a formulation of 4.5 mM IFKhAN-92 + 0.5 mM KNCS [78]. At 95°C, 

this CI formulation in 0.25–2.0 M citric acid slows down the corrosion of steel 3 (k0 = 57.4–

106 g/(m2·h) by a factor of 133–185. In inhibited media, the k values of steel 3 are 

k   g/(m2·h). The maximum efficiency of the IFKhAN-92 + KNCS mixture is not 

reached in the t range studied.  

Analysis of the results on the protection of steels in solutions of mineral acids by NHC 

derivatives shows that they have no prospects for this purpose in individual form. Even the 

most efficient of these CIs, i.e., triazole derivatives, lose their protective capability rather 

quickly at t > 100°C. The best results in the protection of steels in acid environments can be 

obtained using mixed CIs based on NHC derivatives. The NHC derivatives used as the basis 

should contain a triazole ring. The triazole ring should be modified with various substituents 

that contain neither C=C nor C≡C bonds. Otherwise, the thermal stability of the CI in hot 

acid solutions will decrease and they will suffer many drawbacks typical of unsaturated 

organic CIs as we discussed in the second part of this review [1]. 

The protective effect of NHC derivatives on the corrosion of steels in mineral acid 

solutions can be enhanced and the temperature range of their efficiency can be expanded by 

combining these compounds with components of various nature. Urotropine is a versatile 

additive that improves the protective effect of NHC in HCl solutions. It is well compatible 

with pyridine derivatives (catapin A and I-1-A), but more interesting results can be obtained 

by using its combinations with substituted triazoles. In fact, a mixture of IFKhAN-92 and 

urotropine protects low-carbon steel in this environment up to t = 160°C. It is interesting that 

efficient protection of the metal with a mixture of IFKhAN-92 and urotropine, especially at 

high t, requires urotropine to be the main component, though it is significantly inferior to 

IFKhAN-92 in the inhibitive effect. Binary mixtures of IFKhAN-92 with alkali metal iodides 

or bromides make it possible to protect low-carbon steels in sulfuric acid environments up 

to t = 200°C. Alkali metal halides are widely used to enhance the action of organic CIs of 

various nature in acids [79], but only their combinations with triazoles make it possible to 

achieve such a good result. In solutions of H3PO4 and organic acids, where individual 

IFKhAN-92 is not a very efficient CI of steel, its effect can be improved considerably by 

combining it with relatively hydrophobic sulfur-containing compounds of molecular or 

anionic nature. The best results are provided by compounds of anionic nature, viz., KNCS 

and sodium diethyldithiocarbamate (DDTC). 

Three-component formulations of triazole derivatives open wider prospects for the 

protection of steels in high-temperature acid solutions. The IFKhAN-92 + KI + urotropine 
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mixture is a versatile CI that inhibits the corrosion of not only low-carbon steels but also 

chromium–nickel stainless steels that are very difficult for inhibitor protection. Three-

component CIs containing a triazole derivative and urotropine are new and promising CIs of 

steels in highly corrosive acid media. As a rule, it is impossible to provide efficient protection 

of steels in mineral acid solutions containing an additional oxidizing agent, namely, Fe(III) 

salts [48, 80]. The combination of IFKhAN-92, urotropine and KNCS makes it possible to 

protect low-carbon steels in such environments at t  80°C, which is a unique result [81, 82]. 

The successful application of composite CIs based on NHCs for the protection of steels 

in high-temperature acid solutions makes the mechanism of their action an urgent question. 

Understanding its features for these CIs is not only important for their practical use but also 

opens a way for creating more efficient new HCIs. 

III. Mechanism of the protective action of nitrogen-containing heterocyclic organic 

compounds 

When the mechanism of the protective action of UCs was discussed [1], we noted that the 

protection of steels in high-temperature acid solutions can be provided only by those 

compounds which are chemically adsorbed on the metal surface and then form a 

polymolecular layer in which CI molecules are bound to each other by chemical bonds, on 

top of the chemisorbed inhibitor monolayer. In the case of UCs, the possibility of their 

adsorption on a steel surface and formation of a polymolecular protective film is provided 

by the presence of unsaturated C≡C and C=C bonds in their structure. In NHC derivatives, 

a nitrogen-containing heterocycle will serve as such an active site. As discussed above and 

based on experimental data on the protection of steels in high-temperature acid solutions, it 

is most promising to use a triazole as such an active center. The thermal stability of NHC 

derivatives in high-temperature acid solutions is extremely important. Otherwise, the CI will 

undergo destruction in a corrosive environment and will be removed from it. This condition 

is clearly confirmed by a study on the thermal stability of IFKhAN-92 that protects steels at 

t  200°C. Optical spectrophotometry data for IFKhAN-92 solutions in 2 M H2SO4 

(t  200°C) after exposure for 2 h show that the changes in the IR spectrum begin at t = 180°C, 

indicating its stability at lower temperatures [83]. The intensity of the characteristic signal 

of IFKhAN-92 decreases by only 7% at 180°C and by 15% at 200°C in 2 h. Note that the 

resinification of ACs, the well-known HCIs, begins at lower temperatures [84, 85]. In 4 M 

HCl (150°C) in 3 h, propargyl alcohol turns into a resinous product in 52% yield, while 

propargyl chloride does so in 70% yield. 

The chemisorption interaction of a CI with a steel surface is a prerequisite that allows 

the CI to protect the metal under high-temperature corrosion conditions. This statement is 

clearly demonstrated by recent studies. It is believed that if the standard free adsorption 

energy of a CI (−Gads) is less than 20 kJ/mol, then physical adsorption takes place. Only if 

(−Gads)40 kJ/mol, one can state with high probability that the CI is chemisorbed. The 

(−Gads) value of 2-[(E)-[5-methoxy-1-[4-(trifluoromethyl)phenyl]pentylidene]amino]-



 Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1194–1236 1214 

    

 

oxyethanamine on mild steel in 1 M HCl is 15.2–21.4 kJ/mol, which indicates the physical 

nature of the interaction of the CI molecules with the metal surface. In the presence of 

0.1 mM of this CI, an increase in t from 30 to 60°C increases Z from 94.4 to 95.1%, but a 

further increase in t decreases Z. At 90°C, Z = 88.5% [86]. Most likely, the physically 

adsorbed CI molecules are desorbed at t > 60°C, which impairs the metal protection. The 

maximum efficiency of this CI lies at t = 60°C, so we cannot consider it as an HCI. A similar 

result is observed for 2-methyl-9-phenyl-1,2,3,4-tetrahydroacridine and ethyl 9-phenyl-

1,2,3,4-tetrahydroacridine-2-carboxylate whose (−Gads) is slightly higher and amounts to 

25.4–30.6 kJ/mol. On X80 steel in 15% HCl, both CIs (400 ppm) provide Z = 96.1 and 

94.4% at 30°C, as well as  and 79.0% at 90°C, respectively [87]. The results of these 

studies that are rare due to the wide temperature range they cover show that the absence of 

a chemical bond between the CI molecules and the metal surface does not allow the CI to 

provide efficient protection of steels in hot acid solutions. 

To understand the nature of the NHC interaction with steel surfaces in acid solutions, 

the data on their (−Gads) require systematization. Though the literature available to us 

contains almost no estimates of NHC adsorption on steel from acid solutions by direct 

methods, there is plenty of data on the determination of (−Gads) obtained by a less correct 

method, viz., from the results of measuring the mass loss of steel samples in inhibited acid 

solutions. 

Generalization and analysis of the data on the adsorption of six-membered NHCs on 

steels in acid media showed that in most cases the observed values of (−Gads) are 

insufficient to make an unambiguous conclusion about their chemisorption on a steel surface 

[6]. This is consistent with the conclusion made above that these compounds are unsuitable 

as a basis for creating HCIs. 

Azole derivatives show more encouraging results. According to the data summarized 

in review [88], the values of (−Gads) for various imidazo[1,2-a]pyridines on steels in acid 

solutions are close to or higher than 40 kJ/mol, which allows us to hope that they are 

chemisorbed on the metals. Our analysis of literature data (Table 6) shows that for some 

derivatives of imidazoles, triazoles, and tetrazoles, the calculated values of (−Gads) reach 

or exceed the threshold value of 40 kJ/mol, which allows one to assume that the azoles are 

chemisorbed on steel. The data on the adsorption of azoles on steel measured by direct 

methods, i.e., by a decrease in the capacitance of the double electric layer (DEL) of a steel 

electrode obtained using the electrochemical impedance spectroscopy (EIS) and by 

ellipsometry, become even more valuable in this context. 

An EIS study of the adsorption of the IFKhAN-92 HCI indicates the chemisorption 

nature of the interaction between the molecules of this CI and the steel surface. At t = 22°C, 

the adsorption of IFKhAN-92 on cathodically polarized low-carbon steel is described by the 

Temkin isotherm, while (−Gads) is 42 kJ/mol in 2.0 M HCl [102], 49 kJ/mol in 2.0 M 

H2SO4 [103], and 51 kJ/mol in 2.0 M H3PO4 [104]. It is important to note that the kinetics 

of IFKhAN-92 adsorption on low-carbon steel from solutions of mineral acids is described 
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by the Roginsky–Zeldovich equation that characterizes chemisorption processes. As 

discussed earlier, IFKhAN-92 is inefficient in the protection of steels in 2.0 M H3PO4, but 

its combination with 0.5 mM KNCS can improve protection considerably. It was shown that 

addition of KNCS to 2.0 M H3PO4 does not affect the value of (−Gads) of IFKhAN-92 on 

steel but accelerates its adsorption, as the kinetic adsorption isotherms clearly demonstrate 

(Figure 6) [104]. Apparently, this effect favors the accelerated formation of a protective CI 

layer on the metal surface that rapidly degrades in acid solutions, this providing the required 

protection. It should be noted that this is just one of the possible ways in which the KNCS 

additive can affect a corroding system. 

Table 6. Free adsorption energies of substituted azoles on steels from acid media.  

No. Inhibitor System 

Standard 

adsorption free 

energy (−Gads), 

kJ/mol 

Adsorption 

isotherm 
Ref. 

Imidazoles 

1 
2-(2-Methyl-5-nitro-1H-imidazol-

1-yl)ethanol] 

0.5 M HCl  

(30–60°C). 

Mild steel 

58.2–66.0 
Temkin 

isotherm 
[89] 

2 
5-((4,5-Dihydro-imidazol-2-yl) 

methyl)quinolin-8-ol 

1 M HCl 

(25°C). Mild 

steel 

40.3 
Langmuir 

isotherm 
[90] 

3 

2-(3-(Carboxymethyl)-1H-

imidazol-3-ium-1-yl)acetate, 

2-(3-(1-carboxyethyl)-1H-

imidazol-3-ium-1-yl)propanoate, 

2-(3-(1-carboxy-2-phenylethyl)-

1H-imidazol-3-ium-1-yl)-3-

phenylpropanoate 

1 M HCl 

(35°C). Mild 

steel 

37.0. 

 

37.5. 

 

37.6 

Langmuir 

isotherm 
[91] 

4 

2-(4-Сhlorophenyl)-1,4,5-

triphenyl-1H-imidazole, 

1,4,5-triphenyl-2-(p-tolyl)-1H-

imidazole 

0.5 M H2SO4 

(25°C).  

Mild steel 

42.1. 

 

41.7 

Langmuir 

isotherm 
[92] 

5 
1,3-Dioctadecylimidazolium 

bromide 

1 M H2SO4 

(room t). Mild 

steel SAE 1018 

37.9 
Langmuir 

isotherm 
[93] 

 

 

 

     

      



 Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1194–1236 1216 

    

 

No. Inhibitor System 

Standard 

adsorption free 

energy (−Gads), 

kJ/mol 

Adsorption 

isotherm 
Ref. 

Triazoles 

6 

3,5-Bis(methylene octadecyl 

dimethylammonium chloride)-

1,2,4-triazole 

1 M HCl 

(25°C).  

Carbon steel 

42.1 
Langmuir 

isotherm 
[94] 

7 

3,5-Bis(4-pyridyl)-4H-1,2,4- 

triazole, 

3,5-bis(4-methylthiophenyl)-4H-

1,2,4-triazole 

1 M HCl 

(30°C). 

Mild steel 

39.4 

 

44.4 

Langmuir 

isotherm 
[95] 

8 
3,5-Bis(2-thienylmethyl)-4-

amino-1,2,4-triazole 

1 M HCl 

(30°С). 

Carbon steel 

45.7 
Langmuir 

isotherm 
[96] 

9 

3,5-Bis(4-methoxyphenyl)-4-

amino-1,2,4-triazole, 

3,5-bis(4-chlorophenyl)-4-amino-

1,2,4-triazole 

2 M H3PO4 

(30°С). 

mild steel 

41.1 

 

39.8 

Langmuir 

isotherm 
[97] 

10 

3,5-Bis(4-tolyl)-4-amino-1,2,4-

triazole, 

3,5-Bis(3,4-dimethoxyphenyl)-4-

amino-1,2,4-triazole 

2 M H3PO4 

(30°С).  

Mild steel 

39.8 

 

40.0 

Langmuir 

isotherm 
[98] 

Tetrazoles 

11 
(E)-3-(4-Hydroxyphenyl)-2-(1H-

tetrazole-5-yl)acrylonitrile 

1 M HCl  

(35–65°С). 

Mild steel 

37.6–39.7 
Langmuir 

isotherm 
[99] 

12 

2,2′-Bis(4-nitrophenyl)-5,5′-

diphenyl-3,3′-(3,3′-dimethoxy-

4,4′-diphenylene)ditetrazolium 

chloride 

0.5 M H2SO4 

(25°С). Cold 

rolled steel 

41 
Langmuir 

isotherm 
[100] 

13 

3,3′-(3,3′-Dimethoxy[1,1′-

biphenyl]-4,4′-diyl)-bis(2,5-

diphenyl-2H-tetrazolium) 

dichloride 

1.0 M H2SO4 

(20°С). Cold 

rolled steel 

39.1 
Langmuir 

isotherm 
[101] 

The chemisorptive interaction of triazoles with a steel surface in acid media is 

characteristic not only of low-carbon steels but also of chromium–nickel ones that are very 

difficult to protect by inhibitors. In fact, the values of (−Gads) for IFKhAN-92 on 

12Kh18N10T steel calculated using the Temkin equation amount to 551 and 611 kJ/mol 
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for 2.0 M HCl and 2.0 M H2SO4, respectively [105]. This result is in good agreement with 

the data of an ellipsometric study on its adsorption, according to which the (−Gads) values 

on 12Kh18N10T steel in 0.005–0.05 M HCl and 0.05 M H2SO4 calculated from the Temkin 

isotherm are 55 kJ/mol [106]. 

Important additional information on the nature of binding of CI molecules with a steel 

surface can be obtained using quantum chemical methods. In recent years, more and more 

studies were appearing in which quantum-chemical calculations were used to explain the 

inhibitory effect of azoles [107–113]. A detailed analysis of the prospects of using quantum 

chemical methods for explaining the inhibitory action of organic compounds, including 

azoles, was carried out in the review [114], so this issue can be left outside the scope of our 

review. 

 
Figure 6. Dependence of the coverage of steel 3 surface with inhibitor (E = –0.30 V) on the 

logarithm of its adsorption time in 2 М H3PO4 (22°C) containing IFKhAN-92 (а) and its 

combination with 0.5 mM KNCS (b), with concentrations in μm: 1 – 2.5, 2 – 5.0, 3 – 10. 

Points – observed plots. Straight lines – theoretical plot for the Roginsky–Zeldovich equation. 

To a considerable extent, the unique property of triazoles that gives them the ability to 

protect steels in high-temperature acid solutions is that they can form polymolecular 

protective layers from their molecules on the metal surface. X-Ray photoelectron 

spectroscopy (XPS) combined with argon ion etching of the object surface provides the most 

productive method for studying such surface layers. This XPS technique allows one to 

determine the qualitative and quantitative composition of not only the layers directly 

adjacent to its surface, but also the underlying sample layers that are inaccessible by ordinary 

methods. Our studies show that, according to XPS data, a 24 h exposure of steel 3 samples 

in 2.0 M HCl+5.0 mM IFKhAN-92 (20°C) results in the formation of a protective layer of 

the organic inhibitor 4 nm thick on the metal (no more than 4 monomolecular layers). Upon 

sixfold ultrasonic cleaning of the steel surface in distilled water (3 min each time), only a 

tentative inhibitor monolayer with a thickness of no more than 2 nm remains on the metal. 

The CI monolayer remaining on the steel surface at t = 20–60°C provides Z = 88.9–96.4%. 

This value is slightly worse than that of the polymolecular CI layer (Z = 94.9–98.8%) but 
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high enough to confirm the chemisorptive nature of the CI interaction with the steel surface 

(Figure 7a). Thus, a polymolecular protective CI layer is formed on steel in this medium. It 

consists of its monolayer chemisorbed on the metal, on top of which there are layers of CI 

molecules bound to each other and to the chemisorbed layer by weaker physical interaction. 

Ultrasonic cleaning removes the physically sorbed molecules from the steel surface, leaving 

only a chemisorbed monolayer. In this case, the metal surface underlying the organic CI 

layer is oxidized to iron(III) oxide. A CI layer similar in structure and protective properties 

is formed in 2.0 M H2SO4+5.0 mM IFKhAN-92+5.0 mM KNCS (Figure 7b) but, despite 

the presence of KNCS in the inhibitor formulation, no thiocyanate anions are found in the 

protective layer [115]. Triazoles do not always form polymolecular layers on a metal being 

protected. In fact, IFKhAN-96 is adsorbed on steel surface from 2.0 M HCl (25°C) to form 

only a tentative CI monolayer chemically bound to the metal surface. Under a monolayer of 

the organic CI, there are phases of iron(II) chloride and oxide 4–7 nm thick that are directly 

adjacent to the metal [32]. 

 
Figure 7. Protective after-effect of inhibitor layers formed at t = 20°C on the surface of steel 3 

in 2 М HCl + 5 mM IFKhAN-92 (a) and 2 M H2SO4 + 5 mM IFKhAN-92 + 5 mM KNCS (b) 

in 2 М HCl (a) and 2 M H2SO4 (b) solution (2 h). 1 – samples after preliminary inhibitor 

adsorption (24 h), 2 – samples after preliminary inhibitor adsorption (24 h) followed by 

ultrasonic washing, 3 – samples without preliminary inhibitor adsorption.  

The protective layers formed by IFKhAN-92 in phosphoric acid solutions have more 

complex structures [116]. During preliminary adsorption of a IFKhAN-92+KNCS mixture 

on steel surface from Н3PO4 solutions, a chemisorbed protective layer more than 4 nm thick 

is formed, which presumably consists of a complex polymeric compound of IFKhAN-92 

molecules, Fe(II) cations, and rhodanide anions (Figure 8). This layer is not removed from 

the steel surface during ultrasonic treatment and has a protective aftereffect in hot Н3PO4 

solutions, as we discussed in our review [48]. One can see that addition of KNCS not only 

accelerates the adsorption of the triazole on steel but can also participate in the formation of 

a protective layer of the organic inhibitor. 
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Figure 8. The assumed structure of the protective layer formed on steel 3 surface in 2 M 

H3PO4 + 5 mM IFKhAN-92 + 5 mM KNCS (25°C). 

Protective polymolecular layers of IFKhAN-92 are formed not only on low-carbon steel 

but also on chromium–nickel steels. During preliminary adsorption of IFKhAN-92 on the 

surface of 12Kh18N10T steel, a polymolecular protective organic CI layer is formed from 

an HCl solution. It is chemically bound to the phase of Fe, Cr and Ni oxides and hydroxides 

adjacent to the metal phase [117, 118]. The lower part of the polymolecular protective layer 

of the organic CI consists of a polymer complex formed by IFKhAN-92 molecules, metal 

cations (Fe, Cr and Ni) and chloride anions, while the outer part consists of physically sorbed 

IFKhAN-92 molecules. Weakly bound CI layers are removed from the metal surface during 

its ultrasonic cleaning in an HCl solution. The CI layer remaining on the metal surface (about 

3 monolayers) exhibits a protective aftereffect in 2 M HCl with t up to 80°C (Figure 9), 

which is evidence of the chemical nature of interaction of the organic CI within the layer of 

its complex polymer with the surface of the oxide–hydroxide phase. We noted the formation 

of structurally similar protective layers on chromium–nickel steels in case of its protection 

in H2SO4 solutions with composite CIs based on IFKhAN-92 [119]. 

Thus, an important property of triazole derivatives as CIs of steels in acid solutions is 

their ability to form polymolecular protective layers on a metal surface. A specific feature 

of these layers is that the underlying CI layer is chemically bound to the steel surface. Above 

this layer, there are layers of the organic CI whose molecules are bound either physically or 
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chemically with each other. It is clear that the maximum protective effects will be provided 

by chemically bound CI layers. Experimental data indicate that organic CI layers consist of 

a polymer complex of triazole molecules and Fe cations (Cr and Ni in the case of chromium–

nickel steels). In addition, the components of the triazole-based CI mixture (for example, 

thiocyanate anion) can be incorporated into the structure of the polymer complex, which 

ultimately strengthens the complex structure. It is the formation of such polymolecular layers 

that allows triazoles to provide efficient protection of steels in high-temperature acid 

solutions. 

 
Figure 9. Protective after-effect of inhibitor layers formed on the surface of chromium-nickel 

steel 12Kh18N10T in 2 М HCl + 5 mM IFKhAN-92 (20°C) in 2 М HCl solution (2 h).  

1 – samples after preliminary inhibitor adsorption (24 h), 2 – samples after preliminary 

inhibitor adsorption (24 h) followed by ultrasonic washing, 3 – samples without preliminary 

inhibitor adsorption. 

Let us consider the possible reasons for the improvement of the protective effect of 

HCIs upon addition of urotropine. This issue was not studied separately, but XPS data 

indicate that the combination of IFKhAN-92 with urotropine seals the protective layer 

formed on the surface of 12Kh18N10T steel in HCl solution, presumably due to chemical 

crosslinking of the organic parts of CI molecules initiated by formaldehyde, a product of 

urotropine hydrolysis [117]. In general, this issue requires a more detailed experimental 

study, considering the practical importance of HCIs that contain urotropine. 

Literature sources provide extensive data on the electrochemical behavior of triazoles 

in acid solutions at temperatures that rarely reach 75°C [120–129]. Voltammetric 

measurements indicate that these compounds efficiently inhibit the cathodic and anodic 

reactions that occur on steels. According to EIS results, addition of such CIs into a corrosive 

environment decreases the capacitance of the double electric layer on steel and increases the 

polarization resistance. Voltammetry and EIS data are always in good agreement with the k 

of steel samples obtained by measuring their mass loss. In view of this, data related to higher 
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temperatures become even more interesting. Using IFKhAN-92 as an example, it has been 

shown that individual triazoles or formulations based on them can significantly slow down 

the electrode reactions on low-carbon [130] and chromium–nickel [41, 42] steels in HCl and 

H2SO4 solutions at temperatures close to 100°C.  

Formulations of IFKhAN-92 with sulfur-containing compounds have a similar effect 

on the electrode reactions on low-carbon steel in solutions of H3PO4 [131], acetic, formic 

[75] and citric [78] acids. In particular, the addition of 5.0 mM IFKhAN-92+0.5 mM DDTC 

significantly inhibits the electrode reactions of steel 3 in 4.0 M H3CCOOH and 4.0 M 

HCOOH (t = 100°C), though the individual components of the mixed CI do not affect these 

reactions considerably (Figure 10). These results are in good agreement with the data of 

corrosion tests (Table 5) based on the weight loss of metal samples, according to which the 

IFKHAN-92+DDTC formulation significantly slows down the corrosion of steel 3 in both 

acids under these conditions [75]. 

 
Figure 10. Polarization curves of steel 3 in acetic and formic acids (t = 100°C) with addition 

of 5.0 mM IFKhAN-92 + 0.5 mM DDTC. 

The high protective effects of IFKhAN-92 and its formulations in inhibiting the 

electrode reaction of steel at temperatures close to 100°C allow us to hope that they will 

retain their protective effect even at higher temperatures. Thus, the layers formed by triazoles 

on a steel surface can slow down both electrode reactions on the metal in a wide temperature 

range, which ultimately determines the possibility of its protection even under high-

temperature corrosion conditions. 



 Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1194–1236 1222 

    

 

IV. Protection of chromium–nickel steels in phosphoric acid solutions by inorganic 

inhibitors 

In exceptional cases, steels can be protected in high-temperature acid solutions by inorganic 

CIs alone. It is known that chromium–nickel steel Kh18N10T is in an unstable passive state 

in 1–10 M H3PO4 at t = 100–150°C, so that a few similar samples exposed to a totally 

identical corrosive environment are destroyed at rates that differ by more than an order of 

magnitude. In these cases, the maximum corrosion rate (k) of the samples reaches tens of 

g/(m2·h). For example, in 3 M H3PO4 (130°C) the k values of steel vary within 0.085 to 

7.5 g/(m2·h) [132, 133]. In the industrial operation of a metal, such a behavior can cause 

unpredictable and spontaneous destruction of structures, which is unacceptable, especially 

where such hazardous process fluids as hot acids are used. 

It is recommended to add Cu(II) cations obtained by dissolving CuO in H3PO4, or –
3NO  

anions in the form of NaNO3 for the protection of Kh18N10T steel in hot H3PO4 solutions 

(up to 130°C). The mechanism of action of these additives that favor the preservation of the 

stable passive state of chromium–nickel steel in H3PO4 solutions was considered. It was 

shown that Cu(II) ions inhibit the anodic reaction of steel dissolution in the active state. The 

inhibiting effect of Cu(II) cations becomes even stronger in the presence of nitrate ions, up 

to complete suppression of the anodic reaction. The synergistic effect is explained by a 

change in the structure of metallic copper precipitated from a solution in the presence of 

nitrate ions. It has also been found that copper ions catalyze the nitrate reduction reaction. 

The activating effect is attributed to Cu(I) ions that are formed as an intermediate product in 

the chemical reduction of Cu(II) cations. Cu(I) ions chemically react with nitrate to give 

reactive components which, unlike nitrates, can be easily discharged on the cathode, thus 

increasing the efficiency of the overall cathodic process and promoting the electrode 

passivation [134–137]. 

The protection of steel structures with inorganic compounds in high-temperature acid 

solutions is possible only if the metal being protected is already in the passive region. In the 

media we are discussing, this state can be observed in the case of high-alloy steels. The 

passive state of steels in acid environments can be preserved by oxidizing agents. This study 

clearly shows that the use of oxidizing-type CIs (nitrate ion, Cu(II)) makes it possible to 

protect steels in hot acid solutions. 

V. Conclusions 

Based on the concept of the mechanism of acid corrosion inhibition by UCs and NHCs, let 

us formulate the basic principles of inhibitory protection of metals in mineral acids at 

t  100°C. Under high temperature acid corrosion conditions, it is only possible if the CI 

forms a protective film on the metal surface that is firmly bound to it. A protective film on a 

metal can be formed by addition to the corrosive environment of monomeric UCs that can 

polymerize upon adsorption on the metal surface. Such polymerization can decrease the 

solubility of the adsorbed layer, increase the protective effect, and make the adsorption 
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irreversible. However, UCs are prone to side polymerization reactions in the bulk of the 

corrosive medium, which is extremely undesirable in practical use [1]. 

A fundamentally new and more promising method to create protective coatings on 

steels is to use thermostable azoles. These compounds are chemisorbed on the metal surface 

and form a monomolecular layer firmly bound to its surface. On top of this layer, additional 

polymolecular physical or chemical adsorption of the CI occurs, which significantly 

improves its protective properties. An important way to increase the efficiency of azoles and 

expand their temperature range of application is to create synergistic formulations based on 

them. 

Thus, a high-temperature CI of steels in acid solutions should: 

● be capable of strong adsorption on the corroding metal surface; 

● form a polymolecular protective layer on the metal in order to provide the strongest 

protection; 

● be thermally stable in acid solutions (without resinification); 

● enhance the protective effect under high-temperature conditions when combined 

with other thermally stable additives. 

Triazole derivatives that fully comply with the requirements listed above should be used 

as a basis for creating mixed HCIs based on NHCs. Diazoles and tetrazoles can become an 

alternative to triazoles, but the possibility of their use as HCIs needs to be checked by 

experiments. It should be borne in mind that the industrial use of UCs, pyridine and quinoline 

derivatives and additives compatible with them as CIs [1] will be limited by the 

environmental requirements for such compounds. In view of this, triazole derivatives are 

more interesting. To create HCIs, they should be combined with safe and cheap urotropine, 

as well as relatively safe alkali metal iodides and bromides as additives. The use of mixed 

CIs based on UCs is well justified only for hydrochloric acid solutions. Composite CIs based 

on triazoles are more versatile. They can be used to protect steels both in mineral (HCl, 

H2SO4, H3PO4) and organic (acetic, formic, citric) acids. 

To summarize, the authors of the review express their hope that the results they 

collected concerning the inhibitory protection of steels in high-temperature acid solutions 

will be interesting and useful to the readers. The regularities of the inhibitory protection of 

steels in high-temperature acid solutions that we discussed open the possible approaches to 

the creation of new HCIs urgently required by the oil and gas industry and by metallurgical 

industry. 
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