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Abstract 

The desorption potentials of various types of inhibitors in the anodic dissolution of iron in 

acidic solutions are considered. Literature data on the effect of inhibitor concentration, role 

of anions, and the presence of heteroatoms on the desorption potentials are summarized. It 

is shown that the desorption potentials ennoble with an increase in the concentration of 

inhibitors. For cationic inhibitors, desorption potentials are observed in the presence of 

halide ions. Desorption potentials are observed in the presence of nitrogen-containing, 

sulfur-containing and “green” corrosion inhibitors. The specific features of their protective 

action mechanism are discussed. The main conclusion from the results obtained by various 

authors is that the range of desorption potentials does not depend on the chemical nature of 

inhibitors. Therefore, it is determined by the properties of the anodically polarized metal. 

The interpretation of the results presented in this review is associated with an analysis of the 

mechanism of anodic dissolution of iron. The analysis of the data obtained in the review was 

carried out from the standpoint of the cooperative nature of the metal electronic subsystem. 

Partial depolarization of the anode was assumed to occur during the adsorption and transition 

of electrons from oxygen atoms of water molecules, halide ions, and other electron-donating 

inhibitors. It is assumed that at high anodic overvoltages, a two-dimensional quasi-liquid 

phase is formed on the metal surface, which leads to the desorption of any inhibitors, 

regardless of their chemical nature. 
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Introduction 

Monographs and reviews [1–3], as well as a large number of original articles, deal with the 

study of the mechanism of action of metal corrosion inhibitors. According to Rosenfeld [4], 

inhibitors alter the kinetics of electrochemical reactions that occur during corrosion; 

therefore, the mechanism of action of inhibitors can be most fully established if the basic 

laws of electrochemical kinetics in the presence of inhibitors are revealed, as well as the 

molecular mechanism of their action. In this paper, we consider some features of the effect 

of inhibitors of various nature on the anodic dissolution of iron and low carbon steel in acid 
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media. Jofa and Rozhdestvenskaja were the first to show that the anodic reaction on iron in 

sulfuric acid is inhibited in the presence of iodide ions at low polarizations in the anodic 

region of potentials, but at higher potentials the anodic current density abruptly increases by 

several orders of magnitude [5]. Similar results were obtained not only for I– but also for 

other halide ions [6–12]. Heusler called the potential at which an abrupt increase in the 

anodic current density occurred “the potential of unpolarizability” [6]. Kaesche called this 

potential “the threshold potential” [3]. The reason for the observed phenomenon lies in the 

desorption of iodide ions that occurs in a narrow range of potentials, as confirmed by X-ray 

photoelectron spectroscopy [13], therefore, the value of the potential of an abrupt increase 

in the anodic current is called the desorption potential (Edes). This review analyzes the 

experimental results of studies in which similar phenomena occur not only in the presence 

of halide ions, but also with other acid corrosion inhibitors of iron and low carbon steel. 

Method for determining the desorption potential Edes 

Two methods are known to determine the desorption potential. In method 1, it was suggested 

to determine the desorption potential in an inhibited medium by an abrupt increase in the 

rate of the anodic reaction, i.e., the transition of the anodic process to the non-polarizability 

state (Edes in Figure 1) [3, 5, 6]. Other authors determine the desorption potential by the value 

of the potential at which the anodic reaction rates in an inhibited and uninhibited acid become 

equal (method 2, 
des

E in Figure 1) [14, 15]. In the present work, it was assumed that the 

desorption potential was determined by method 1. It was found from an analysis of literature 

data that in some cases the anodic curve in an inhibited solutions after desorption of the 

inhibitor does not reach the current values in the uninhibited solution (2´́ ), in most cases the 

curves merge (2´), and in some cases after desorption the current becomes higher than in the 

uninhibited solution (2´́´). We assumed that in all cases (2´, 2´́  and 2´́´), desorption of the 

inhibitor begins at Edes, while complete desorption may not occur. All the desorption 

potentials are referred to the normal hydrogen electrode (NHE). 

 
Figure 1. Anodic polarization curves of metal: 1, 1´ – pure medium; 2, 2´, 2´́ , 2´́ ´ – various 

options for the effect of the inhibitor on the anodic polarization curve. Explanations are 

provided in the text. 
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Desorption potentials of halide ions 

The effect of halide ions on the anodic dissolution of iron and low carbon steel has been 

studied in numerous publications. In a number of papers [6, 7, 9, 11, 12, 16, 18–23], the 

effect of various concentrations of iodide ions in 0.5 M H2SO4 was studied in the absence 

and in the presence of organic inhibitors of various nature. Data on the desorption potentials 

of halide ions in 0.5 M H2SO4 are given in Table 1. 

Table 1. Desorption potentials of halide ions on iron in 0.5 M H2SO4 solution in the absence and in the 

presence of inhibitors. 

No. Inhibitor 
Inhibitor 

concentration (M) 

Halide ion 

concentration (M) 
Edes, V Ref. 

1   
5.5×10–4 I– 

5.5×10–2 I– 

–0.18 

–0.08 
6 

2 

  

10–3 Cl– 

10–3 Br– 

0.5×10–3 I– 

– 

–0.18 

–0.16 

7 

Diphenylamine 10–3 

– 

10–3 Cl– 

10–3 Br– 

0.5×10–3 I– 

–0.23 

–0.19 

–0.18 

–0.08 

7 

3   
10–3 I– 

10–2 I– 

–0.22 

–0.16 
9 

4   3×10–2 I– –0.05 10 

5   

5×10–3 Cl– 

5×10–3 Br– 

5×10–3 I– 

–0.18 

–0.16 

–0.06 

11 

6   

10–3 I– 

3×10–3 I– 

5×10–3 I– 

–0.18 

–0.16 

–0.14 

12 

 Polyacrylic acid 10–3 

10–3 I– 

3×10–3 I– 

5×10–3 I– 

–0.18 

–0.15 

–0.13 

12 

7   10–1 I– –0.15 16 

 
Cetyltrimethylammonium 

bromide 
7×10–6  –0.13  
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No. Inhibitor 
Inhibitor 

concentration (M) 

Halide ion 

concentration (M) 
Edes, V Ref. 

8   

5×10–4 I– 

10–3 I– 

2.5×10–3 I– 

5×10–3 I– 

–0.20 

–0.18 

–0.16 

–0.15 

19 

 Polyacrylamide 10–6 

5×10–4 I– 

10–3 I– 

2.5×10–3 I– 

5×10–3 I– 

–0.20 

–0.18 

–0.16 

–0.15 

19 

9 Amodiaquine 10–3 10–2 I– –0.04 20 

10   10–4 I– –0.15 21 

 
Tetrabutylammonium 

sulphate 
10–3 10–4 I– –0.10 21 

11   10–1 I– –0.15 22 

 Cetylpyridinium chloride 

10–5 

2×10–5 

7×10–5 

2×10–4 

 

–0.28 

–0.25 

–0.23 

–0.22 

22 

 Cetylpyridinium chloride 10–5 

10–1 Cl– 

10–1 Br– 

10–1 I– 

–0.20 

–0.18 

–0.14 

22 

12   

10–4 KI 

5×10–4 KI 

10–3 KI 

5×10–3 KI 

10–2 KI 

5×10–2 KI 

10–1 KI 

–0.17 

–0.16 

–0.15 

–0.10 

–0.09 

–0.07 

–0.07 

23 

 Propargyl alcohol 10–2 10–2 KI –0.12 23 

Desorption potential range, V: –0.22…–0.04 

It can be seen from the data given in Table 1 that the desorption potential is ennobled 

in the presence of halide ions in the series Cl– < Br– < I–, which correlates with the data on the 

protective action of these anions [10, 11]. In the presence of cationic corrosion inhibitors 

such as diphenylamine [7], tetrabutylammonium [21], cetylpyridinium [22], the desorption 

potential of iodide ions shifts to a more positive region compared to the desorption potentials 

of halide ions at the same concentrations in the absence of organic cations. However, if non-

charged or anionic organic polymers act as the organic partners of iodide ions, then the 
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desorption potentials do not change upon their addition [12, 19]. The same picture is 

observed in the presence of non-charged propargyl alcohol [23]. With an increase in the 

concentration of iodide ions, the desorption potential in 0.5 M H2SO4 shifts in the positive 

direction. The range of potentials for the desorption of halide ions is –0.22 to –0.04 V.  

Desorption potentials of cationic inhibitors 

Quaternary ammonium, pyridinium, imidazolium and phosphonium compounds are known 

as corrosion inhibitors in hydrochloric and sulfuric acids. Table 2 shows the desorption 

potentials of organic cations of various nature in the anodic dissolution of iron and low 

carbon steel in acids of various concentrations, as well as after the addition of various anions. 

Table 2. Desorption potentials of organic cations on iron in acid solutions. 

No. 
Acid 

concentration (M) 
Inhibitor 

Inhibitor 

concentration (M) 
Edes, V Ref. 

1 0.5 M H2SO4 
N,N,N-Trimethyldodecylammonium 

bromide 
10–2 –0.13 24 

2 0.5 M H2SO4 Tetrabutylammonium iodide 5×10–3 –0.13 25 

3 0.5 M H2SO4 Tetrabutylammonium bromide 10–2 –0.16 26 

4 0.5 M H2SO4 Tetrabutylammonium sulfate 
10–3 

10–3+10–4 M I– 

– 

–0.10 
21 

5 3 M H2SO4 Tetrabutylammonium sulfate 
10–3 

10–3+10–3 M I– 

– 

–0.05 
5 

6 1 M HCl Dodecyl pyridinium bromide 1.5×10–4 –0.08 27 

7 0.5 M H2SO4 Cetylpyridinium chloride 

10–5 

2×10–5 

7×10–5 

2×10–4 

–0.28 

–0.25 

–0.23 

–0.22 

22 

8 0.5 M H2SO4 

1-Octyl-3-methylimidazolium 

bromide 

1-Allyl-3-octylimidazolium 

bromide 

10–2 

10–2 

–0.18 

–0.16 
28 

9 1 M HCl 

1-Vinyl-3-aminopropylimidazolium 

hexafluorophosphate 

1-Vinyl-3-aminopropylimidazolium 

tetrafluoroborate 

8×10–4 

 

 

8×10–4 

–0.09 

 

 

–0.06 

29 

10 3 M HCl 

3-Oxa-1,5-pentamethylene-bis-(N-

alkyl-N,N-dimethylammonium 

chloride) 

12-O-12, R = C12H25; 

18-O-18, R = C18H37 

 

 

 

5×10–3 

10–4 

 

 

 

–0.04 

–0.08 

30 
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No. 
Acid 

concentration (M) 
Inhibitor 

Inhibitor 

concentration (M) 
Edes, V Ref. 

11 1 M HCl 

Methyltrioctylammonium 

methylsulfate 

Trimethyltetradecylammonium 

methylsulfate 

2×10–4 

 

2.7×10–4 

–0.08 

 

–0.08 

31 

12 1 M HCl 
Cetylpyridinium bromide 

Cetyltrimethylammonium bromide 

4×10–4 

4×10–4 

–0.06 

–0.06 
32 

13 1 M HCl 
1-(2-(4-Chlorophenyl)-2-

oxoethyl)pyridazinium bromide 
10–3 –0.08 33 

14 0.1 M H2SO4 
1-Ethyl-3-methylimidazolium 

dicyanamide 
5×10–2 –0.10 34 

15 1 M H2SO4 

2-Undecyl-1-ethylamino-1-

methylbenzyl quaternary 

imidazoline 

5×10–4 

10–4+5 ×10–3 I– 

–0.14 

–0.08 
35 

16 1 M HCl 

Di(N,N-diethylphenylammonium 

bromide ethanoate)polyethylene 

glycol 

10–2 –0.06 36 

17 1 M HCl 
Poly(4-vinylpyridine--

polyethylene oxide), degree of 

quaternisation 5% 

2.5×10–8 –0.06 37 

18 0.5 M H2SO4 
(2-Aminobenzyl) 

triphenylphosphonium bromide 
10–2 –0.18 38 

19 0.5 M H2SO4 
(2–Hydroxyethyl)triphenyl 

phosphonium bromide 
10–2 –0.10 39 

20 1 M H2SO4 
Propargyltriphenylphosphonium 

bromide 
10–3 –0.19 40 

21 0.5 M H2SO4 
Benzyltriphenylphosphonium 

bromide 

10–3 

10–2 

–0.18 

–0.14 
41 

22 0.5 M H2SO4 
Allyltriphenylphosphonium 

bromide 

10–3 

10–1 

–0.16 

–0.12 
42 

23 0.5 M H2SO4 
Butyltriphenylphosphonium 

bromide 

10–3 

10–2 

–0.20 

–0.14 
43 

24 0.5 M H2SO4 
3-(4-Fluorobenzyl)-1-methyl-1H-

imidazol-3-ium bromide 
10–2 –0.08 110 

Desorption potential range, V: –0.30…–0.04 

It follows from the data of Table 2 that with an increase in the concentration of cationic 

inhibitors, the desorption potentials are ennobled [22, 41–43]. In addition, the desorption 
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potentials of cetylpyridinium cations in sulfuric acid are more negative than in hydrochloric 

acid [22, 32]. In the absence of iodide ions, the desorption potentials of tetrabutylammonium 

sulfate are not observed at all, but addition of iodide ions results in a pronounced desorption 

effect [5, 16]. The desorption potentials of tetrabutylammonium bromide are more negative 

than those of tetrabutylammonium iodide [5, 14, 25, 26]. For more complex cationic 

inhibitors such as 2-undecyl-1-ethylamino-1-methylbenzyl quaternary imidazoline, a 

desorption potential is observed, but upon addition of iodide ions it shifts towards more 

positive values [35]. Depending on the nature of the acid, the structure of the inhibitor, its 

concentration and type of the halide ion, the range of desorption potentials of cationic 

inhibitors ranges from –0.30 to –0.04 V. 

Desorption potentials of nitrogen-containing inhibitors 

Table 3. Desorption potentials of nitrogen-containing inhibitors.  

No. 
Acid 

concentration 
Inhibitor 

Inhibitor 

concentration (M) 
Edes, V Ref. 

1 0.1 M HClO4 Piperazine 10–2 –0.23 44 

2 0.1 M HCl 

2-[(1,3-Benzothiazol-2-

ylamino)methyl]-1-naphthol 

2-{[(6-methyl-1,3-benzothiazol-2-

yl)amino]methyl}-1-naphthol 

10–3 

10–3 

–0.13 

–0.12 
45 

3 0.1 M HCl 
1,3-Bis [2-(2-hydroxy-

benzylidenamino)phenoxy]propane 
10–4 0.14 46 

4 0.1 M HCl Hypoxanthine 10–2 –0.19 47 

5 2 M H2SO4 
Polytriazole derivative +  

5·10–3 M KBr + 5·10–3 M KI 
2.4×10–1 

–0.06 

–0.04 
48 

6 1 M HCl 

(E)-2-((2,3-Dimethylphenyl)-

amino)-N´-(4-methylbenzylidene) 

benzohydrazide 

(E)-N´-Benzylidene-2-((2,3-

dimethylphenyl)amino)benzo-

hydrazide (HDZ-3) 

10–3 

 

 

 

10–3 

–0.09 

 

 

 

–0.09 

50 

7 1 M HCl 
5-Penthylaminomethyl-8-

hydroxyquinoline 

10–4 

10–3 

–0.16 

–0.13 
51 

8 1 M HCl 

1,1´-(Pyridine-2,6-

dihylbis(methylene))bis(5-methyl-

1-H-pyrazole-3-carboxylic acid) 

10–3 –0.13 52 

9 1 M HCl 
5-(((4-hydroxybenzylidene) 

amino)methyl)quinolin-8-ol 
10–3 –0.16 53 
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No. 
Acid 

concentration 
Inhibitor 

Inhibitor 

concentration (M) 
Edes, V Ref. 

10 1 M HCl 
5-(4-Dimethylaminobenzylidene) 

rhodamine 
10–4 –0.12 54 

11 1 M HCl 
5´-Phenyl-2´,4´-dihydrospiro 

[indole-3,3´-pyrazol]-2(1H)-one 
3.6×10–5 –0.20 55 

12 1 M HCl Piperidine, 4-methyl-piperidine 10–2 –0.11 56 

13 1 M HCl 2-Benzylidenemalononitrile 10–3 –0.11 57 

14 1 M HCl 6-Benzylaminopurine 
2.0×10–3 

4.0×10–3 

–0.14 

–0.13 
58 

15 1 M HCl 6-Benzylquinoline 10–3 –0.06 59 

16 

0.1 M H2SO4 

 

0.1 M HCl 

Adenine 

Adenine 

Adenine 

Adenine 

10–2 

10–2 + 5×10–3 I– 

10–2 

10–2 + 5×10–3 I– 

–0.22 

–0.16 

–0.19 

–0.16 

60 

17 0.5 M H2SO4 Amodiaquine 10–3+10–2 I– –0.11 18 

18 0.5 M H2SO4 8-Hydroxyquinoline 
10–3 + 10–2 NaCl 

10–2 + 10–2 NaCl 

–0.14 

–0.10 
61 

19 1 M HCl Tinidazole 2.3 ×10–3 –0.11 62 

20 1 M HCl 
1-Ethyl-3-methylquinoxalin-

2(1H)-one 
10–3 –0.11 63 

21 1 M HCl Pyrazole 10–2 –0.06 64 

22 1 M HClO4 1-Hydroxybenzotriazole 5×10–3 –0.11 65 

23 1 M HCl 1-Methylpyrazole 5×10–3 –0.14 66 

24 1 M HCl Phenanthroline 1.4×10–3 –0.14 67 

25 1 M HCl 

2,5-Bis(2-pyridyl)-1,3,4-oxadiazole 

2,5-Bis(2-hydroxyphenyl)-1,3,4-

oxadiazole 

3×10–4 

3×10–4 

–0.10 

–0.12 
68 

26 0.5 M HCl 
4-Nitro-2-methoxyphenyl-N-

salicylidine 
10–3 –0.14 76 

27 1 M HCl 4-(Pyridin-4-yl)thiazol-2-amine 2×10–4 –0.11 115 

Desorption potential range, V: –0.30…–0.04 

It follows from the data in Table 3 that there is no significant difference in the 

desorption potentials of nitrogen-containing inhibitors in solutions of sulfuric, perchloric and 

hydrochloric acids. With an increase in the concentration of inhibitors, the desorption 

potential is ennobled [51, 58, 61]. Addition of iodide ions results in an increase in the 
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desorption potentials [48, 60]. In general, the desorption potentials of nitrogen-containing 

inhibitors are in the range of –0.30...–0.04 V. 

Desorption potentials of sulfur-containing inhibitors 

Table 4. Desorption potentials of sulfur-containing inhibitors.  

No. 
Acid 

concentration (M) 
Inhibitor 

Inhibitor 

concentration (M) 
Edes, V Ref. 

1 1 M HCl 
Methyl [6-(propylthio)-1H-

benzoimidazol-2-yl]carbamate 
4×10–4 –0.08 49 

2 1 M HCl Cimetidine 2×10–3 –0.11 69 

3 1.4 M HCl 
5-(2-Hydroxyphenyl)-1,2,4-

triazole-3-thione 
5×10–4 –0.16 70 

4 0.1 M H2SO4 Thiourea 10–3 –0.16 71 

5 1 M HCl 

N,N´-((2E,2´E)-2,2´-(1,4-

phenylenebis(methanylylidene)) 

bis(hydrazinecarbonothioyl))bis(2-

oxo-2H-chromene-3-carboxamide) 

5×10–4 –0.16 72 

6 0.5 M H2SO4 
3-[(2-Hydroxy-benzylidene)-

amino]-2-thioxo-thiazolidin-4-one 
10–3 –0.12 73 

7 0.5 M HCl 

5-((E)-4-Phenylbuta-1,3-

dienylideneamino)-1,3,4-

thiadiazole-2-thiol 

10–3 –0.04 74 

8 
0.5 M HClO4 

1 M HClO4 

4-(N,N-Dimethylamino-

benzylidine)-3-mercapto-6-methyl-

1,2,4-triazin-(4H)-5-one 

10–3 

10–3 

–0.14 

–0.12 
75 

9 1 M HCl 
4-Salicylideneamino-3-phenyl-5-

mercapto-1,2,4-triazole 
1.6×10–3 –0.06 77 

10 0.1 M HCl 
N-(2-Thiophenyl)-N´-

phenylthiourea 
4×10–4 –0.11 78 

11 

1 M HCl 

2 M HCl 

0.5 M H2SO4 

1 M H2SO4 

3-{[8-(Trifluoromtthyl)quinilin-4-

yl]thio}-N´-(2,3,4-

trihydroxybenzylidene) 

propanohydrazide 

10–3 

10–3 

10–3 

10–3 

–0.08 

–0.06 

– 

–0.13 

79 

12 1 M HCl Cephamycin 7.5×10–4 –0.10 80 

13 1 M HCl 

5,5´-((1Z,1´Z)-(1,4-Phenylene-

bis(methanylylidene))bis-

(azanylylidene))bis(1,3,4-

thiadiazole-2-thiol) 

5×10–3 –0.13 81 
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No. 
Acid 

concentration (M) 
Inhibitor 

Inhibitor 

concentration (M) 
Edes, V Ref. 

14 1 M HCl 

1,3-Dibenzylthiourea 

1-Benzyl-3-diisopropylthiourea 

1,3-Dibenzylurea 

2×10–4 

2×10–4 

2×10–4 

–0.10 

–0.08 

–0.12 

82 

15 0.01 M HCl N-(Furfuryl)-N´-phenylthiourea 4×10–4 –0.16 83 

16 
0.1 M H2SO4 + 

0.25 M Na2SO4 
Thiourea 6.5×10–3 –0.16 84 

17 1 M HCl 
3-Pyridinecarbozalde 

thiosemicarbazone 
1.5×10–3 –0.14 85 

18 
0.5 M H2SO4 

1 M HCl 

p-Hidroxyisopropylphenylseleno-

(methoxy)methane 
Saturated solution 

–0.14 

–0.08 
86 

19 
1 M HCl +  

3% ethanol 

Dibenzylthiourea 

Dibenzylthiourea + 2-

hydroxypropyl-α-cyclodextrin 

5×10–5 

5×10–5 

–0.10 

–0.10 
87 

20 0.5 M H2SO4 Cysteine 1.3×10–2 –0.05 88 

21 1 M HCl Allyl-thiourea 4·10–3 –0.11 89 

22 0.5 M H2SO4 Benzenemethanethiol 
5×10–3 

10–2 

–0.11 

–0.06 
90 

23 0.5 M HCl 3-Amino-1,2,4-triazole-5-thiol 10–2 –0.06 91 

24 1 M HClO4 N-Naphtyl-N´-phenylthiourea 2.5×10–4 –0.06 92 

25 1 M HClO4 2-Mercapto-1-methylimidazole 2.5×10–3 –0.01 93 

26 2 M HCl 

5,5´-[Butane-1,4-

diylbis(sulfanediyl)bis(4-amino-

4H-1,2,4-triazole-3-thiol)] 

10–3 –0.15 94 

27 1 M HCl 1,3-Diisopropyl-2-thiourea 5×10–3 –0.08 95 

28 0.1 M HCl Pyridine-2-thiol 10–3 –0.16 96 

Desorption potential range: –0.16…–0.01 

It is evident from the data in Table 4 that the desorption potentials of thiourea and its 

derivatives depend on the presence of substituents. In the series comprising thiourea [71, 84], 

allylthiourea [89], dibenzylthiourea [82, 87] and naphthylphenylthiourea [92], the 

desorption potentials become more negative. Moreover, the desorption potential shifts 

towards positive potentials with an increase in the inhibitor concentration [90]. The 

desorption potentials of sulfur-containing inhibitors are in the range of -0.16 ... -0.01 V. 
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Desorption potentials of “green” corrosion inhibitors 

Table 5. Desorption potentials of “green” corrosion inhibitors. 

No. 
Acid 

concentration (M) 
Inhibitor 

Inhibitor 

concentration 
Edes, V Ref. 

1 1 M HCl Extract from Aniba rosaeodora 200 mg/L –0.04 97 

2 1 M HCl Piper Longum 300 mg/L –0.18 98 

3 
0.5 M H2SO4 

0.5 M HCl 
Ziziphus mauritiana leaves extracts 2800 ppm 

– 

–0.13 
99 

4 1M HCl 

1,1´-(2,2´-(2,2´-Oxybis(ethane-2,1-

diyl) bis(sulfanediyl))bis(ethane-2,1-

diyl))diazepan-2-one 

10–3 M –0.11 100 

5 1 M HCl Zingiber officinale oil 2 g/L –0.11 101 

6 
0.5 M H2SO4 

0.5 M HCl 
Tetratriethanolamine trioleate 100 ppm 

–0.11 

–0.04 
102 

7 0.5 M HCl 
N-(1H-Indol-3-yl-methylene)-

nicotinamide 
500 ppm –0.11 103 

8 1 M HCl Mucuna pruriens seed extract 1 g/L –0.16 104 

9 1 M HCl Gongronema latifolium extract 1 g/L –0.16 105 

10 5% NH2SO3H Myrtus communis extract 250 ppm –0.16 106 

11 1 M HCl Podocip 100 ppm –0.16 107 

12 1 M HCl Artemisia judaica herbs extract 300 ppm –0.06 108 

13 0.5 M H2SO4 
Iota-carrageenan 

Inulin 

1000 ppm 

1000 ppm 

–0.09 

–0.06 
109 

14 1 M HCl 
Eriobotrya Japonica (Thunb.) leaf 

extract 
500 mg/L –0.12 110 

15 1 M HCl Atenolol 300 ppm –0.06 111 

16 1 M HCl Coffee ground extracts 400 mg/L –0.11 112 

17 1 M HCl Euphorbia falcata extract 3 g/L –0.14 113 

18 1 M HCl Date extract 1.5 V/V% –0.11 114 

19 0.5 M H2SO4 
Loquat (Eriobotrya japonica Lindl.) 

leaves extract 
saturated –0.16 116 

20 0.5 M HCl Vitamin B1 10–5 M –0.06 117 

21 
0.5 M HCl 

1 M HCl 
Pimenta dioica leaf extracts 

0.13% 

0.13% 

–0.10 

–0.08 
118 

22 1 M HCl Michelia alba leaves extract 1.7 g/L –0.16 119 

Desorption potential range: –0.18…–0.04 V 
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In recent years, many publications have appeared where natural extracts were studied 

as “green” acid corrosion inhibitors. Table 5 shows that desorption processes are also 

observed in the inhibition of anodic reaction with inhibitors based on natural compounds. 

The same compounds in sulfuric acid do not exhibit desorption phenomena at all but 

manifest them in hydrochloric acid [99]. The desorption potential in hydrochloric acid is 

more positive than in sulfuric acid [102]. The desorption potentials of “green” inhibitors 

range within –0.18...–0.04 V. 

Discussion 

In [6], the origins of the inhibitory effect and desorption of iodide ions and CO were 

interpreted from the standpoint of the “catalytic” mechanism of anodic dissolution. Since 

exactly similar effects arise from adsorption of both neutral carbon monoxide molecules and 

charged iodide ions, it appears unlikely that the effects may be ascribed to any significant 

changes in the potential in the diffuse part of the double layer. The observed effects of iodide 

ions or carbon monoxide may arise from one or more of the following reasons:  

- the activation energy of the dissolution reaction can be increased (without specifying the 

reason – my comment); 

- the concentration of adsorbed hydroxyl ions, and hence of the catalyst, may be diminished; 

- the frequency of finding an active metal atom contiguous to a catalyst site may be reduced. 

However, the reason for the desorption of inhibitors is not explained. The review [3] 

showed that the same phenomena are observed in the presence of phenylthiourea as in the 

presence of iodide ions and CO. The adsorption of inhibitors such as thiourea derivatives, as 

well as carbon monoxide and iodide ions, is due to a covalent chemical bond with the metal. 

According to the author, desorption occurs for the same reasons that organic compounds and 

iodide ions are desorbed from mercury at potentials that are more negative or positive than 

the zero-charge potential. The same point of view is shared by Z.A. Iofa [21] who believes 

that the desorption of tetrabutylammonium cations in the presence of iodide ions from the 

surface of iron is due to electrostatic reasons. With an increase in the concentration of 

inhibitors, the adsorption potential is ennobled; this effect was studied, in particular, using 

of iodide ions as an example in the work by Heusler [6] and in other publications [7, 9, 11, 

12, 18–23]. The results of other authors are similar both in the character of the dependence 

of Edes on the concentration of anions and in the absolute values of the desorption potentials 

(Figure 2). 
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Figure 2. Dependence of iodide ion desorption potentials on concentration during anodic 

dissolution of iron in 0.5 M H2SO4 according to [6] (blue line); according to [7, 9, 11, 12, 16–

23] (orange line). 

As follows from the data presented in the review, acid corrosion inhibitors of various 

nature – halide ions, cationic inhibitors in the presence of halide ions, nitrogen-containing 

and sulfur-containing compounds, as well as “green” inhibitors of various compositions – 

are desorbed in the same range of potentials. Therefore, the desorption potentials are 

independent of the nature of inhibitors. It can be assumed that they are determined by the 

properties of the anodically polarized metal. All the inhibitors listed in the review are capable 

of adsorption on the metal surface due to chemical forces, similarly to the above iodide ions, 

CO, and phenylthiourea. Cationic inhibitors that do not have electron-donating properties 

are not adsorbed in the anodic region of potentials in the absence of halide ions [17]. It is 

known that halide ions increase the adsorption of cationic inhibitors [130]. From the results 

of this review it follows that in the presence of organic cations such as tetrabutylammonium, 

halide ions are desorbed at more positive potentials than in their absence [5, 21]. In the 

framework of the proposed model of anodic dissolution, this is due to the fact that cations 

located on top of the layer of chemisorbed anions block the process of desorption of the 

anodic dissolution products, i.e., metal cations, which increases the potential region in which 

anions are able to have a depolarizing effect on the anodic process. 

In earlier studies [3, 6, 21], the anodic polarization curves are presented in a narrow 

range of potentials near the corrosion potential. In most of the papers cited in this review, 

polarization curves in a wide range of potentials are given. Using the effect of halide ions on 

the anodic dissolution of iron in sulfuric acid as an example [11], it can be seen that 

desorption begins in the region of potentials in which the transition of the anodic process 

from the Tafel region to the region where limiting currents occur (or occurred) in non-

inhibited solutions (Fig 3). It was previously shown that the routes of anodic dissolution in 

the Tafel region and in the region of limiting currents are different [121–123]. 
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Figure 3. Potentiodynamic polarization curves for mild steel in 0.5 M H2SO4 in the absence and 

presence of 5×10–3 M KX (X = Cl, Br, I). Reproduced with permission from L. Guo et al. [11]. 

Therefore, the approach to the interpretation of the results presented in this review is 

associated with an analysis of the mechanism of anodic dissolution of iron. All valence 

electrons in metals are shared to form a common subsystem of quasi-free electrons at the 

Fermi level [124]. The change in the Fermi-level energy of electrons through the change in 

electrode potential that is the principal origin of the effects of electrode potential on the 

electron charge-transfer rates in electrochemical reactions [125]. With anodic polarization 

of a metal, a decrease in the Fermi level occurs [126]. Studies of the electronic subsystem of 

crystalline iron showed that each metal atom in the crystal lattice transfers three electrons to 

the Fermi level [127]. For this reason, the activation barrier associated with the transfer of 

the first and second electrons from a surface Fes atom to the metal conduction band during 

anodic dissolution is absent. The act of depolarization of the [Fen]
p+ anode as a cooperative 

system with a lower Fermi level due to polarization (p+ is the conditional charge of a 

polarized anode) consists of the transfer of an ion leaving the metal to the near-surface 

electrolyte layer [122, 123]:  

 [FenFes]p+ + mH2O → [Fen]
(p–2)+ + [Fe(H2O)m]2+ (1) 

Another method of partial depolarization of the anode is by adsorption and transition 

of electrons of the oxygen atoms of water molecules [126], halide ions and other electron-

donating inhibitors described in this work, which, due to the electron-donating properties of 

heteroatoms or multiple bonds, decrease the anodic polarization. One can see from Figure 2 

that the adsorption and protective effect of halide ions on the anodic dissolution of iron 

increases in the series Cl– < Br– < I–  [11], which coincides with the data in Table 1 on the 

change in the desorption potentials of halide ions. The desorption potentials of halide ions 

and other inhibitors are in the region of potentials in which the transition of the anodic 
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process from the Tafel region to the region of limiting currents occurs in uninhibited 

solutions (Figure 2). It was shown earlier [123] that a decrease in the density of surface 

electronic states with an increase in the anodic polarization can lead, at sufficiently large 

anodic overvoltages, to complete delocalization of atoms in the first surface layers of crystals 

in contact with a liquid phase. A special structurally disordered quasi-liquid state of this layer 

appears with a short-range order that is characteristic of a two-dimensional adsorption layer 

in an electrolyte [128]. During the electroreduction of metals at one of the stages, a liquid 

rapidly crystallizing phase of the metal was discovered [129]. Under the conditions where a 

two-dimensional quasi-liquid phase is formed from the metal surface, desorption of any 

inhibitors occurs regardless of their chemical nature, as shown in the analysis of Tables 1–5. 

Conclusion 

In the present work, the desorption processes of iron acid corrosion inhibitors in the anodic 

potential region are analyzed. The main conclusion from the results obtained by different 

authors is that the range of desorption potentials does not depend on the chemical nature of 

inhibitors. Therefore, it is determined by the properties of the anodically polarized metal. 

The analysis of the data obtained in the review was carried out from the standpoint of the 

cooperative nature of the metal electronic subsystem. For a deeper understanding of the 

patterns identified here, it is advisable to continue the accumulation of experimental material 

and perform a theoretical analysis of results using quantum-chemical and statistical methods 

for studying metal-corrosive environment-inhibitor systems.  
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