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Abstract 

Corrosion is a natural phenomenon occurring on the surface of metals exposed to different 

mediums. There have been several methods employed to inhibit such corrosion of metals. 

Among the existing methods, the use of organic coatings is most popular. However, the main 

drawback related to the use of organic coatings is their sensitivity towards aggressive mediums, 

which reduces the coating efficiency. The existing methods are also costly and are not 

environment friendly. Development of self-healing coatings for corrosion protection of metallic 

surfaces attracted great interest over the past few years. Self-healing coatings have shown 

remarkable development and demonstrated great promise in extending the service life, reducing 

maintenance costs, thereby improving the durability and reliability of conventional protective 

organic coatings over metallic surfaces. Among the different methods used to improve the self-

healing capabilities in the next generation of organic coatings, loading of corrosion inhibiting 

agents in the coatings has been widely acknowledged to be the most applicable approach to self-

healing protection. Self-healing coatings showed good corrosion protection of metals in 

different applications due to controlled release of the active inhibiting agents from the coatings 

for preventing crack propagation in protective coatings. This review aims to highlight the most 

recent advances in self-healing coatings loaded with different corrosion inhibitors. 
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Introduction 

Corrosion is the metal-environment interaction, which causes changes in the properties of 

the metal and thereby reduces the efficiency of the metal [1, 2]. When the metal is getting 

deteriorated by the influence of environment, it may become necessary to protect it from the 

environmental action. Protective coatings are most widely used method to protect metallic 

surfaces. Decrease of the Gibbs free energy of the system accelerates corrosion. Due to this 

metal has a strong affinity to return to its original form [3]. This ability of metal to return to 

its original oxide form is defined as corrosion. Coatings employed for corrosion inhibition 

must lead to formation of an effective physical barrier, impeding the access of foreign 
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materials to the metal surface. The metallic corrosion is the global problem and complicated 

challenge that has bothered the economy of different countries for many years. 

Types of corrosion prevention 

Generally, the corrosion of metal surfaces is protected by coatings through the following 

mechanisms: corrosion inhibition, electrolytic inhibition, cathodic protection, anodic 

passivation [4, 5]. Cathodic protection is carried out by coating with a highly electro-positive 

metal that polarizes the substrate and behaves as approximate anode. Nevertheless, 

galvanization of steel substrates by electroplating is regarded as the most ever-present 

strategy for the protection of metal surfaces. The anodic passivation prevents corrosion by 

forming a passivating layer on the top of the metal surface that destroys the redox reaction 

by generating an ion-selective barrier [6, 7]. Electrolytic inhibition prevents the corrosion by 

hindering the migration of ions between cathode and anode. Self-healing coatings also 

includes introduction of corrosion inhibiting materials within the coating that allow for re-

formation of organic coatings. Recent advances in metallic coatings have tried to achieve 

different means of corrosion protection in a single coating for expanded lifetime of the 

coating against highly corrosive environment [8, 9]. 

Corrosion inhibitors 

Different types of corrosion inhibitors have been developed and used for effective metallic 

corrosion inhibition. Use of plant extracts in the field of metallic corrosion inhibition is 

widely growing methods because of their green and environmentally sustainable behavior 

[10–12]. Various phytochemicals present in the plant extracts leads to strong metal-inhibitor 

interactions, which develops high inhibition efficiencies of these extracts. These 

phytochemicals are naturally synthesized by photosynthesis without using any toxic solvents 

of chemicals that offers them as one of the greenest alternatives to be used for various 

applications including the field of corrosion inhibition [13]. Chemical medicines or drug 

molecules are other commonly employed green alternative corrosion inhibitors for metallic 

corrosion in various electrolytic media [14–17]. Their biological and natural origins offer 

them as green and environmentally friendly chemicals to be used for several purposes. 

Generally, drugs are chemically complex molecules those possess several active sites in the 

form of heteroatoms and extensive conjugation and offer strong bonding with the metallic 

surface. Extensive uses of inorganic compounds as inhibitors as such or in the combination 

with organic corrosion inhibitors in solution phase as well as for coating have been reported 

in literature. Presence of the inorganic compounds (mostly salts) in the solution enhances 

the effectiveness of the organic corrosion inhibitors through the phenomenon of synergism 

[18, 19]. Most of the used synthetic inhibitors are toxic for living organisms and also to the 

surrounding environment because of their multistep synthesis and use of conversional energy 

source for heating those are associated with huge discharge of environmental malignant 

chemicals into the surrounding and reduced yield due to their association with several 

workups and purification processes [20, 21]. In view of this recently organic corrosion 
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inhibitors are being synthesized using the one step multicomponent reactions (MCRs) which 

is generally associated with ease to handle and high yield [22, 23].  

Coatings 

Coatings is regarded as a hot topic for protection of metals for many years [24, 25]. Varying 

the rules that govern human health and environmental problems imposed more limitations 

on the use of hazardous compounds such as volatile organic compounds and use of 

chromium(VI) etc. For example, chromium-containing compounds used in coatings are 

known to be toxic and carcinogenic; the recent regulations impose strong limitations in 

future use of chromium containing compounds aiming to a great effort in developing 

chromate-free coatings. New coating techniques were development to overcome the imposed 

limitations and all technical needs. More investigations on self-healing coatings for 

corrosion protection of metal surfaces have been carried out. The development of non-toxic 

coatings and low-volatile organic compounds as potential corrosion inhibitors have been 

being investigated to develop self-healing coatings. 

Due to such limitations and difficulties, more attention was given by scientists to 

develop new coatings which are self-healing in nature. The main objective of self-healing 

coating is to incorporate self-healing inhibitors within the coating which lead to partial or 

full coating recovery from any coating damages. Introduction of urea formaldehyde 

incorporated with self-healing materials into the organic coating was firstly reported by 

N. Sottol [26] in the year 1993. Since that, many scientists worked in this hot topic leading 

to a lot of successful attempts of developing self-healing coatings. The proposed three main 

mechanisms through which the self-healing properties function are the intrinsic, capsule and 

vascular strategies. 

In intrinsic mechanism, reversible bonding occurs after impairment. Integration of 

dicyclopentadiene in the matrix can convince such properties but it is highly expensive [27]. 

In capsule strategy, inhibitors are filled in micro- or nanocapsules and this healing liquid 

spreading toward the broken area after damage. Many successful attempts have been 

disclosed on encapsulation technique and were prolonged to multifunctional coatings [28]. 

For instance, entrapped corrosion inhibitors in the “nano-containers” is working in two steps: 

a) Curing the destruction produced by the corrosion product. b) Releasing the inhibitor from 

the nano-container towards the damaged spot for corrosion protection. Investigation in this 

area has been carried out at several levels and incorporating nanocontainers is regarded as a 

new break through. The efficiency of CeO2 nanoparticles as corrosion inhibitors in hybrid 

saline coatings was reported by Montemor [29]. The fabrication of pH sensitive inhibitors 

for self-healing corrosion damage is another strategy to protect metal surface. Such strategy 

was successfully explained by D. Snihirova et al. [30]. They used CaCO3 microbeads 

saturated with corrosion inhibitors and these beads dissolve at pH 4. This strategy is also 

valid for SiO2 nanotubes as core inside polymer shell [31] and other inorganic nanoparticles 

including TiO2 nanoparticles as an example. The major advantage of the nanocontainers is 

that they can be combined in thin coatings with very low loading capacity [32]. 
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Self-healing coatings 

Self-healing is defined as “the ability of a material to heal or repair damages automatically 

and independently, that is, without any external intervention” [33]. Self-healing materials 

can be well-known as materials which are capable of autonomously restoring their properties 

in such a manner that they can function longer as compared to similar materials without self-

healing abilities [34]. Self-healing coatings are required for the total or partial repair of 

coated areas damaged by ageing or unexpected aggressive events. Concerning self-healing 

coatings for corrosion protection, two main strategies have been pursued:  

(i) mending of defects formed in the polymeric coating matrix via addition of polymerizable 

agents and (ii) inhibition of corroding areas due to the presence of corrosion inhibitors. One 

of the most common approaches used for controlling releasing of healing agents is 

Microcapsule Embedment Microencapsulation which is a process of enclosing 

microparticles of solids, liquids, or gases inside an inert shell, which thereby isolates and 

protects them from the surrounding environments [35–40]. The outcome of the 

microencapsulation is called micro-capsules. It contains two components: the core and the 

shell. Early literature [41, 42] recommends the usage of microcapsules of healing agents in 

a polyester matrix to accomplish a self-healing influence. But they failed in manufacturing 

applicable self-healing materials. The first applicable investigation of self-healing materials 

was disclosed in 2001 by White et al. [27]. Self-healing abilities were accomplished by 

inserting microcapsules of healing agents within polymer layers containing dispersed 

catalytic materials.  

Corrosion inhibitors in coatings 

Environment-friendly surface treatments have been largely investigated for the replacement 

of chromate in both conversion coatings and primers for painting. Variety of inhibitors 

producing passivation and precipitation films have been used as inhibitors, such as 

molybdates, tungstates, phosphates, and silicates, with corrosion inhibition efficiencies 

similar to those of chromates for the protection of many metals [43–47]. Lanthanide salts 

were also tested as safe corrosion inhibitors [48, 49] and they proved to offer excellent 

passivation to aluminum, zinc, bronze, steels, stainless and steel alloys [50]. Lanthanide 

compounds are cathodic inhibitors, which precipitate as trivalent cation hydroxides on 

cathodic regions due to local alkalinity increase, so hindering the overall corrosion process. 

Ce3+ salts were also used to produce passive layers based on aluminum and cerium oxides–

hydroxides [51, 52].  

Currently, incorporation of corrosion inhibitors into the coatings form self-healing 

films with improved resistance against corrosion attacks. In some cases, outstanding 

protective properties are achieved by direct addition of the inhibitors into the polymeric 

matrix [53, 54], but in some cases the inhibitor molecular structure is not compatible with 

the polymeric matrix and may initiate coating degradation [55]. Therefore, different types of 

nanocontainers loaded with corrosion inhibitors have been prepared and uniformly dispersed 
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into coating formulations to implement a self-healing mechanism. They are supposed to 

slowly release the active inhibitors in the coating, mainly under diffusion control, helping 

inhibition of corrosion, in correspondence of coating defects. With this aim, oxide 

nanoparticles based on inhibiting species (e.g., CeO2, mixed ZrO2/CeO2 oxides, 

Ce2(MoO4)3, CeAlO3) also doped with organic inhibitors [56–58], b-cyclodextrin-inhibitor 

complexes [59, 60], hollow polymeric nanospheres [61], and halloysite tubes [62], have been 

investigated as promising corrosion inhibitor reservoirs to be incorporated in protective 

coatings. 

In these researches, the inhibitor release from the reservoir is not a selective process 

under corrosion-induced activation. In fact, it is stimulated not only by the onset of localized 

corrosion under the coating, where the inhibitor adsorption protects the damaged regions 

from corrosion propagation and “consumes” dissolved molecule, but also by the continuous 

leaching of inhibitor molecules into the aggressive solution in contact with the coating. 

In a “smart” self-healing coating, entrapped corrosion inhibitors are delivered at the 

metal/coating interface just where and when corrosion starts. Release of inhibiting ions due 

to ion exchange phenomena occurs in pigments, such as cerium(III) and calcium(II) cation-

exchanged bentonites [63] and nanostructured layered double hydroxides (LDHs) [64–66]. 

Calcium carbonate beads [30] and hydrotalcite microparticles [67] loaded with corrosion 

inhibitors may provide additional corrosion protection to coatings by releasing the inhibitor 

molecules in anodic acid regions, where the particle tends to dissolve. 

Other smart self-healing coatings enclose nanocontainers of corrosion inhibitors, 

covered by stratified layers of oppositely charged polyelectrolytes, which can deliver the 

incorporated corrosion inhibitors in correspondence of coating defects, again released by pH 

variations [68, 69]. In fact, in these oppositely charged polyelectrolyte layers, each layer 

contains molecules with either weak acid or weak basic ionized functional groups which 

help forming a stable multilayer film on the inhibitor reservoirs, due to electrostatic 

interactions. As corrosion starts, pH variations at anodic and cathodic regions tend to 

neutralize the salts of weak acids or bases respectively, so determining the opening of the 

polyelectrolyte shell and the inhibitor release. With this same technique, it is possible to 

produce smart nano coatings directly applied on the metal surface to be protected by 

techniques such as layer-by-layer or spraying and entrapping corrosion inhibitors among 

polyelectrolyte layers [70–72]. 

Besides pH variations, IR radiation or visible light, may be devised and implemented 

to induce controlled inhibitor release. As an example, TiO2 nanoparticles (anatase) modified 

by nanosized photodeposited silver particles were charged by benzotriazole (BTA), coated 

by polyelectrolyte films, and incorporated in hybrid zirconia–organosilica coatings. Under 

irradiation, the production of photoactive species by TiO2 induced oxidation of the 

polyelectrolyte shell and BTA release [73]. 

To produce corrosion-inhibitor-containing nanocapsules, Zheludkevich et al. [74] used 

70-nm silica nanoparticles to fabricate multilayered nanocapsules in a layer-by-layer 

manner, with the corrosion inhibitor layer being entrapped between the polyelectrolyte 
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multilayers. The polyelectrolyte layer, which not only is sensitive to minor changes in the 

pH but also changes its permeability depending on pH [75], allowed for the controlled 

release of the entrapped inhibitors through the increased permeability as corrosion causes 

the pH near the damaged area to change. The polyelectrolyte multilayers were composed of 

polyethylene imine (PEI) and polystyrene sulfonate (PSS), while benzotriazole was used as 

the corrosion inhibitor.  

Choi et al. [76, 77] also studied the effects of different types of amine-based corrosion 

inhibitors on the anticorrosive performance of coatings. Both the encapsulation process and 

the osmotic swelling process were improved when an inhibitor with greater water solubility 

was used. In particular, linearly structured and highly water-soluble amines exhibited a faster 

release rate than did the other inhibitors. Recently, 2-mercaptobenzothiazole (MBT) has also 

attracted significant attention as a corrosion inhibitor when loaded in multilayered 

nanocapsules because it is a very efficient anticorrosion agent, especially for aluminum 

alloys. 

Conclusion 

Recent studies on self-healing coatings for corrosion protection of metals have been 

reviewed. Self-healing coatings offers a path for the preparation of smart polymeric coatings 

with higher efficiency. It can be concluded that the corrosion inhibitor-based self-healing 

approaches have a wide choice. Releasing loaded inhibitor agents from ruptured nano/MCs 

or nano/microfibers has been stated as the most applicable method for the development of 

self-healing materials. Future works in self-healing coatings will focus on reducing the 

healing time, developing high-yield fabrication, developing hybrid methods of inhibitor 

incorporation, loading with environmentally friendly inhibitors. 
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